Guideline Checklist

Welcome to the Code Architect's guideline checklist.
	[image: image1.png]

	This list of over 700 guidelines is excerpted from the textbook Practical Guidelines and Best Practices for Microsoft Visual Basic .NET and Visual C# Developers, by Francesco Balena and Giuseppe Dimauro (2005, Microsoft Press) and is meant to be used together with the book. All the examples on applying these guidelines are provided in the book, together with a thorough description of each rule and its benefits as well as cases where the rule isn't recommended and shouldn't be used.

Buy the book at Amazon for only $32.99 (34% off).

This checklist is provided as a Word document to enable you to modify it as you wish, for example by dropping the sections or the individual guidelines that don't apply to the kind of applications you're developing or that don't fit your coding style. You should create a customized version of this checklist, print it, and use it during the design phase as well as code reviews.

While we encourage you to create a custom version of this list, we ask that (1) you make neither the original nor any customized version of this checklist available outside your company or organization by any means, including Web and FTP sites, and (2) you always keep this introductory text and logo at the top of this document, so that readers can track the origin of the guideline list.
We truly hope that this list will be helpful in improving your coding process.

Francesco Balena, Giuseppe Dimauro

Code Architects Srl, Italy
P.S. This is a preliminary version of the document. We plan to add more data in the future, including a summary of the benefits that each guideline offers. Please check new versions at www.codearchitects.com/guidelinesbook.
	
	1. Projects and Solutions
	
	
	
	

	(
	
	Solution name matches the name of its main project.
	
	1.1
	
	

	(
	
	Place single-project solution files in same directory as project files.
	
	1.2
	
	

	(
	
	Place multiple-project solution files in parent directory of project files.
	
	1.3
	
	

	(
	
	Place ASP.NET solution files in an IIS virtual folder.
	
	1.4
	
	

	(
	
	Place types from different namespaces in distinct project folders.
	
	1.5
	
	

	(
	
	Source file names are PascalCase and are named after the main type they contain.
	
	1.6
	
	

	(
	
	Executable files are named after the project.
	EXE
	1.7
	
	

	(
	
	Executable files are named after their main namespace.
	DLL
	1.8
	
	

	(
	
	Define all company information in a single AssemblyInfo.cs/.vb file shared by all the projects.
	
	1.9
	
	

	(
	
	Include a configuration file.
	
	1.10
	
	

	(
	
	In debug mode, compile with Enable Build Warnings option, disable optimizations, enable integer overflow checks.
	
	1.11, 1.12, 1.13
	
	

	(
	
	In release mode, compile with Treat Compiler Warnings option, enable optimizations, disable integer overflow checks.
	
	1.11, 1.12, 1.13
	
	

	(
	
	Compile with Warning Level 4, don't suppress specific warnings.
	C#
	1.12
	
	

	(
	
	Include debug symbols in the executable (also in release mode).
	
	1.14
	
	

	(
	
	Change default value for DLL base address.
	DLL
	1.15
	
	

	(
	
	Apply Option Explicit On, Option Strict On, Option Compare On settings.
	VB
	1.16, 1.17
	
	

	(
	
	Create max one source file with the Option Strict Off directive.
	VB
	1.18
	
	

	(
	
	Use project-level custom compilation constants instead of #const statements.
	
	1.19
	
	

	(
	
	Use VERSIONxyy project-level custom compilation constants.
	
	1.20
	
	

	(
	
	Use VERSION project-level custom compilation constant.
	VB
	1.21
	
	

	(
	
	Don't use types and methods in Microsoft.VisualBasic.dll.
	VB
	1.22
	
	

	(
	
	Remove Microsoft.VisualBasic from the list of project-wide imports.
	VB
	1.22
	
	optional

	(
	
	Disable incremental builds.
	C#
	1.23
	
	

	
	
	
	
	
	
	

	
	2. Spaces and indentation
	
	
	
	

	(
	
	Indent code with tabs.
	
	2.1
	
	

	(
	
	Indent code with spaces.
	
	2.1
	
	alternate

	(
	
	Use 3 spaces for each indentation level, don't use nonstandard indentation.
	
	2.2
	
	

	(
	
	Avoid consecutive blank lines.
	
	2.3
	
	

	(
	
	Wrap lines longer than 80 characters.
	
	2.4
	
	

	(
	
	Wrap lines after commas and before operators.
	
	2.5a
	
	

	(
	
	Don't wrap lines in the middle of a parenthesized expression.
	
	2.5b
	
	

	(
	
	Don't wrap elements at the same logical nesting level.
	
	2.5c
	
	

	(
	
	Use temporary variables to avoid long lines.
	
	2.5d
	
	

	(
	
	Insert one tab to indent subsequent lines in long statements.
	C#
	2.5e
	
	

	(
	
	Insert one tab to indent subsequent lines in long statements, insert two tabs if next line is already indented by one tab.
	VB
	2.5e
	
	

	(
	
	Place open/close curly braces in a line of their own, at the same indent level as the preceding statement.
	C#
	2.6
	
	

	(
	
	Place open curly braces at the end of the statement that defines the block.
	C#
	2.6
	
	alternate

	(
	
	Leave one space before and after binary operators.
	C#
	2.7
	
	

	(
	
	Leave one space after commas and semicolons.
	C#
	2.7
	
	

	(
	
	Add one space after an open parenthesis and before a close parenthesis, in if, while, for, foreach, switch, and lock statements.
	C#
	2.8
	
	

	
	
	
	
	
	
	

	
	3. Comments
	
	
	
	

	(
	
	Spell checks comments.
	
	3.1
	
	

	(
	
	Standardize on U.S. English (or your national language) for comments.
	
	3.2
	
	

	(
	
	Use imperative style for comments.
	
	3.3
	
	

	(
	
	Use descriptive style for comments.
	
	3.3
	
	alternate

	(
	
	Place comments immediately before the code they refer to, at the same indent level and with no intervening blank lines.
	
	3.4
	
	

	(
	
	Use XML comments to document all public types and methods in a class library; use standard comments in all other cases
	C#
	3.5
	
	

	(
	
	Use XML comments to document all types and methods, regardless of scope and project type.
	C#
	3.5
	
	alternate

	(
	
	Use <include> tags to point to XML comments in external files.
	
	3.6
	
	optional

	(
	
	Use NDoc to produce technical documentation.
	
	3.7
	
	

	(
	
	Use XML comments instead of regular comments, using the Use the VBCommenter add-in.
	VB
	3.8
	
	optional

	(
	
	Document each type and method.
	
	3.9
	
	

	(
	
	Avoid /*...*/ (block) comments.
	C#
	3.10
	
	

	(
	
	Use a standard comment block at the top of all source files, indicating copyright notice, author name, date, and revision history.
	
	3.11
	
	

	(
	
	Ensure that there is a comment at least every 6 lines of code.
	
	3.12
	
	

	(
	
	Avoid statement-level comments (i.e. comments on same line).
	
	3.13
	
	

	(
	
	Add a comment to mark the end if, for, while blocks longer than 20 statements.
	
	3.14
	
	optional

	(
	
	Avoid repeating comments for overloaded versions of same method (unless using XML comments).
	
	3.15
	
	

	(
	
	Use standard comment block for automatically-generated code.
	
	3.16
	
	

	(
	
	Use single-line // comments to comment out code.
	C#
	3.17
	
	

	(
	
	Use TODO comment tokens for unfinished code portions.
	
	3.18
	
	

	(
	
	Use HACK comment tokens for hard-to-understand code.
	
	3.18
	
	

	(
	
	Use DOC comment tokens for code without complete documentation.
	
	3.19
	
	optional

	(
	
	Use TEST comment tokens for code that hasn't been thoroughly tested.
	
	3.19
	
	optional

	(
	
	Use VALIDATE comment tokens for methods lacking argument validation.
	
	3.19
	
	optional

	(
	
	Use OPTIMIZE comment tokens for code that should be fine-tuned.
	
	3.19
	
	optional

	
	
	
	
	
	
	

	
	4. Assemblies and resources
	
	
	
	

	(
	
	Place all assembly-level attributes in the AssemblyInfo.cs/.vb file.
	
	4.1
	
	

	(
	
	Don't place any executable code in the AssemblyInfo.cs/.vb file.
	
	4.1
	
	

	(
	
	Sign all assemblies with strong names (including EXEs).
	
	4.2
	
	

	(
	
	Don't create assemblies containing few types.
	
	4.3
	
	

	(
	
	Put types that are always used together in the same assembly.
	
	4.3
	
	

	(
	
	Avoid multi-module assemblies.
	
	4.4
	
	

	(
	
	Mark library projects with the CLSCompliant attribute.
	DLL
	4.5
	
	

	(
	
	Mark the assembly with a specific version number (avoid "1.0.*").
	
	4.6
	
	

	(
	
	Use embedded manifest resources for readonly data that will never change during the application's lifetime cycle.
	
	4.7
	
	

	(
	
	Place user-interface strings in a resource file.
	
	4.8
	
	

	(
	
	Resource element names are PascalCase, don't include spaces or punctuation symbols, don't begin with a digit.
	
	4.9
	
	

	(
	
	Use satellite assemblies to hold localizable strings and other resources.
	
	4.10
	
	

	(
	
	Mark the main assembly with the NeutralResourcesLanguage attribute..
	
	4.11
	
	

	(
	
	Use the Microsoft Configuration Management Application Blocks to store and retrieve configuration settings.
	
	4.12
	
	optional

	(
	
	Register the assembly in the GAC.
	DLL
	4.13
	
	optional

	(
	
	Precompile Windows Forms applications and controls with Ngen.
	
	4.14
	
	optional

	
	
	
	
	
	
	

	
	5. Namespaces
	
	
	
	

	(
	
	Name the root namespace after your company.
	
	5.1
	
	

	(
	
	Name the second-level namespace after the project.
	
	5.2
	
	

	(
	
	A namespace contains only types that are related to each other and that aren't mutually exclusive.
	
	5.3
	
	

	(
	
	A namespace doesn't contain fewer than 5 types.
	
	5.4
	
	

	(
	
	Avoid nested namespace code blocks (use disjoint namespace blocks instead).
	
	5.5
	
	

	(
	
	Place all types inside a namespace (including implicit VB root namespace).
	
	5.6
	
	

	(
	
	Don't define multiple namespaces in a single source file.
	
	5.7
	
	

	(
	
	Use .NET Framework namespaces naming conventions, but use your company name instead of System.
	
	5.8
	
	

	(
	
	Types in a namespace can't depend on type defined in a nested namespace.
	
	5.9
	
	

	(
	
	Use Company.Utilities namespace for generic utility and helper types that can be reused in other projects.
	
	5.10a
	
	

	(
	
	Use Company.Application.Helpers namespace for utility and helper types that are specific for a given project.
	
	5.10b
	
	

	(
	
	Use a child namespace named Design for types that are used only at design-time.
	
	5.10c
	
	

	(
	
	Use Company.Application.DataObjects namespace for all the data objects used in a given project.
	
	5.10d
	
	

	(
	
	Use Company.Application.BusinessObjects namespace for all the data objects used in a given project.
	
	5.10d
	
	

	(
	
	Use Company.Application.Internal namespace for all the types that are internal to a given project.
	
	5.10e
	
	optional

	(
	
	Use Company.Application.Permissions namespace for all the custom permission objects.
	
	5.10f
	
	optional

	(
	
	Use Company.Application.Configuration namespace for all the types used to configure your application.
	
	5.10g
	
	optional

	(
	
	Import all namespaces used in a source file.
	
	5.11
	
	

	(
	
	Use namespace aliasing to avoid ambiguous type references.
	
	5.12
	
	optional

	
	
	
	
	
	
	

	
	6. Types
	
	
	
	

	(
	
	Type names are PascalCase and don't include underscores.
	
	6.1
	
	

	(
	
	Use US English for type, member, and variable names.
	
	6.2
	
	

	(
	
	Don't use abbreviations in type and member names.
	
	6.3
	
	

	(
	
	Use only well-known acronyms, use uppercase for acronyms of 1 or 2 characters, use PascalCase for acronyms of 3 characters or longer.
	
	6.3
	
	

	(
	
	Avoid language keywords and common .NET Framework names as type and member names.
	
	6.4
	
	

	(
	
	Include only one type in each source file.
	
	6.5
	
	

	(
	
	Split complex types in multiple, simpler types.
	
	6.6
	
	

	(
	
	A type must not reference a global variable or any external variable.
	
	6.7
	
	

	(
	
	Don't use any specific suffix for module names.
	VB
	6.8
	
	

	(
	
	Use App name for the type that contains the Main method.
	
	6.9
	
	

	(
	
	Use Globals name for the type that contains all the global variables in the application.
	
	6.10
	
	

	(
	
	Avoid member names similar to .NET interface members, if your member doesn't implement the interface.
	
	6.11
	
	

	(
	
	Don't define members that define only for character casing.
	C#
	6.12
	
	

	(
	
	Group type members in the following order: event/delegate definitions, fields, constructors, properties, methods, static members, interface members, private (helper) methods.
	
	6.13
	
	

	(
	
	Define private fields wrapped by a property immediately before the property definition.
	
	6.13
	
	

	(
	
	Use #region directives to group members of same type.
	
	6.13
	
	

	(
	
	Use language keywords instead of .NET type names if possible (e.g. Long instead of Int64).
	
	6.14
	
	

	(
	
	Use.NET type names instead of language keywords (e.g. Int64 rather than Long).
	
	6.14
	
	alternate

	(
	
	Use internal/Friend scope for nested types.
	
	6.15
	
	

	(
	
	Don't define a public member unless it is meant to be invoked from a different assembly.
	
	6.16
	
	

	(
	
	Always use an explicit scope qualifier for type members.
	
	6.17
	
	

	(
	
	Favor virtual/Overridable members to new/Shadows members.
	
	6.18
	
	

	(
	
	Avoid public members that take or return non-CLS-compliant types.
	C#
	6.19
	
	

	(
	
	Avoid this/Me keyword, unless it helps making the code less ambiguous.
	
	6.20
	
	

	(
	
	Don't use member named after a Visual Basic keyword (e.g. New).
	C#
	6.21
	
	

	(
	
	Use the Conditional attribute instead of the #if compiler directive to exclude portions of code.
	
	6.22
	
	

	(
	
	Apply the Serializable attribute to all nonsealed classes.
	
	6.23
	
	

	(
	
	Apply the NonSerialized attribute to all fields that can't be serialized, including delegate fields.
	
	6.23
	
	

	(
	
	Apply the Obsolete attribute to deprecated members and types.
	
	6.24
	
	

	
	
	
	
	
	
	

	
	7. Inheritance
	
	
	
	

	(
	
	Don't create object hierarchies more than three levels deep.
	
	7.1
	
	

	(
	
	Use Base suffix for abstract classes.
	
	7.2
	
	

	(
	
	Use compound name for derived class if possible.
	
	7.3
	
	

	(
	
	Favor using base classes over interfaces.
	
	7.4
	
	

	(
	
	In base classes, use abstract members to implement features that are mandatory in derived classes.
	
	7.5
	
	

	(
	
	In base classes, use virtual members that throw NotSupportedException to implement features that are optional in derived classes.
	
	7.6
	
	

	(
	
	Use sealed/NotInheritable keywords for types that shouldn't be derived from.
	
	7.7
	
	

	(
	
	Use a static class for types that are never instantiated or derived from.
	C#
	7.8
	
	

	(
	
	Use a module for types that are never instantiated or derived from.
	VB
	7.8
	
	

	(
	
	Abstract classes must have a constructor with protected scope.
	
	7.9
	
	

	(
	
	Don't define protected members in a sealed class.
	
	7.10
	
	

	(
	
	Mark members with virtual/Overridable keyword only if you know that they might be overridden in derived classes.
	
	7.11
	
	

	(
	
	By default, mark members with virtual/Overridable keyword.
	
	7.11
	
	alternate

	(
	
	Split long tasks in multiple, overridable methods.
	
	7.12
	
	

	(
	
	If a member is overloaded, mark only the most complete version with the virtual/Overridable keyword.
	
	7.13
	
	

	(
	
	Override the ToString method to provide a textual representation of an object.
	
	7.14
	
	

	(
	
	Consider overriding the Equals method if two instances of a type might be considered as equal in some cases.
	
	7.15
	
	

	(
	
	Have the Equals method return false if the argument is null or is of a different type.
	
	7.15
	
	

	(
	
	Never throw an exception from inside the Equals method.
	
	7.15
	
	

	(
	
	If you override the Equals method, override also the GetHashCode method.
	
	7.16
	
	

	(
	
	The value returned by GetHashCode must not change during the object's lifetime.
	
	7.17
	
	

	(
	
	Never use the result from GetHashCode as a quick way to test equality.
	
	7.18
	
	

	(
	
	Consider using the MyClass keyword when calling a virtual method defined in the same type.
	VB
	7.19
	
	

	(
	
	Consider providing strong-typed versions of the Equals and Compare static methods.
	
	7.20
	
	

	(
	
	Don't inherit a type from MarshalByRefObject unless you strictly need its additional features.
	
	7.21
	
	

	
	
	
	
	
	
	

	
	8. Interfaces
	
	
	
	

	(
	
	Interface names begin with the "I" character and follow all the guidelines for type names.
	
	8.1
	
	

	(
	
	Gather all interface definitions in a source file named Interfaces.cs/.vb.
	
	8.2
	
	

	(
	
	Avoid interfaces with more than six members.
	
	8.3
	
	

	(
	
	Don't include event in interfaces.
	
	8.4
	
	

	(
	
	Never change an interface that has been already published.
	
	8.5
	
	

	(
	
	Use Comparer suffix for types that implement IComparer.
	
	8.6a
	
	

	(
	
	Use Formatter suffix for types that implement IFormatter.
	
	8.6b
	
	

	(
	
	Enclose interface implementation in a #region block.
	
	8.7
	
	

	(
	
	Favor public interface implementation over private implementation.
	
	8.8
	
	

	(
	
	Use Protected scope for overridable interface members that aren't private.
	VB
	8.9
	
	

	(
	
	If using nonpublic interface implementation, ensure that interface methods are visible and can be overridden by derived types.
	C#
	8.9
	
	

	(
	
	Implement the IClonable interface for types that might be cloned.
	
	8.10
	
	

	(
	
	When implementing IClonable, consider having a public strong-typed Clone method.
	
	8.11
	
	

	(
	
	When implementing IClonable, ensure that you implement the more appropriate kind of cloning (shallow or deep).
	
	8.12
	
	

	(
	
	When implementing IClonable, just return this/Me if the object is immutable.
	
	8.13
	
	

	(
	
	Implement IComparable with a public Compare method, if the instances of a type might be compared to each other.
	
	8.14
	
	

	(
	
	When implement IComparable, ensure that you correctly leverage any inner IComparable object.
	
	8.15
	
	

	(
	
	Provide a nested TypenameComparer type for comparable types that might be compared along multiple criteria.
	
	8.16
	
	

	(
	
	Use a nested private type named TypenameEnumerator for types implementing IEnumerator and that enumerate instances of the Typename IEnumerable type.
	
	8.17
	
	

	(
	
	Type implementing IEnumerator, ICollection, IList should use private scope for weakly-typed interface members and expose strongly-typed members with same name.
	
	8.18
	
	

	(
	
	Apply the ISerializable attribute to types implementing ISerializable.
	
	8.19
	
	critical

	
	
	
	
	
	
	

	
	9. Structures
	
	
	
	

	(
	
	Use a structure instead of a class if the type is sealed, you don't need neither a constructor with parameters nor a constructor.
	
	9.1
	
	

	(
	
	Use a structure instead of a class if the type has few fields that are value types themselves and that don't take more than 16 bytes.
	
	9.2
	
	

	(
	
	Attempt to define a structure so that its size is a multiple of 4.
	
	9.3
	
	

	(
	
	Define a structure in such a way that it's in a valid state when its fields are zero or null.
	
	9.4
	
	

	(
	
	Override the Equals method to redefine equality.
	
	9.5
	
	

	(
	
	Provide a static, strongly-typed version of the Equals method.
	
	9.5
	
	

	(
	
	Avoid structures that implement interfaces.
	
	9.6
	
	

	(
	
	If a structure implements an interface, don't assign any field from inside an interface method.
	
	9.6
	
	

	(
	
	If a structure implements IDisposable, define a public Dispose method (as opposed to a private one).
	C#
	9.7
	
	

	
	
	
	
	
	
	

	
	10. Enum types
	
	
	
	

	(
	
	Gather all the enum types in a project in a source file named Enums.cs/.vb.
	
	10.1
	
	

	(
	
	If an enum type is used only for a property of a type or an argument of a method, use a nested type for the enum type.
	
	10.2
	
	

	(
	
	Use singular names for regular, non bitcoded enum types.
	
	10.3a
	
	

	(
	
	Use plural names for bitcoded enum types.
	
	10.3b
	
	

	(
	
	Don't use the Enum or Flags suffix for enum types.
	
	10.3c
	
	

	(
	
	Apply the Flags attribute to bitcoded enum types.
	
	10.4
	
	

	(
	
	Don't specify an explicit base for an enum type, use the default Int32 type.
	
	10.5
	
	

	(
	
	Use Byte or Int16 as a base type for enum types to be used in arrays.
	
	10.5
	
	exception

	(
	
	Use Int64 as a base type for bitcoded enum types if Int32 isn't large enough.
	
	10.5
	
	exception

	(
	
	Don't use a common prefix or suffix for members of an enum type.
	
	10.6
	
	

	(
	
	Don't explicitly assign values to members in a non-bitcoded enum type, except for out-of-order elements.
	
	10.7
	
	

	(
	
	Use powers of 2 values for members in a bitcoded enum type; never user negative numbers.
	
	10.8
	
	

	(
	
	Ensure that the default value for a non-bitcoded enum type is zero.
	
	10.9
	
	

	(
	
	Include a member named None and equal to zero in all bitcoded enum types.
	
	10.10
	
	

	(
	
	Don't include "reserved for future use" members.
	
	10.11
	
	

	(
	
	Validate all non-bitcoded enum values passed to method arguments using equality and range checks.
	
	10.12
	
	

	(
	
	Validate all bitcoded enum values passed to method arguments using & / And operators.
	
	10.13
	
	

	
	
	
	
	
	
	

	
	11. Attribute types and Reflection
	
	
	
	

	(
	
	Apply attributes on a separate line, without indenting the line that follows the attribute.
	
	11.1
	
	

	(
	
	Use separate lines for attributes applied to the same code member.
	C#
	11.2
	
	

	(
	
	Use the Attribute suffix for the name of attribute types.
	
	11.3
	
	

	(
	
	Use sealed types for attribute types, if possible.
	
	11.4
	
	

	(
	
	Constructors in attribute types expose read-only properties as positional (mandatory) arguments, read-write properties as named (optional) arguments.
	
	11.5
	
	

	(
	
	Avoid multiple constructors in attribute types.
	
	11.6
	
	

	(
	
	Mark attribute types with the AttributeUsage attribute; explicitly assign the Inherited and AllowMultiple arguments.
	
	11.7
	
	

	(
	
	Use custom attributes instead of marker interfaces, unless you need to check method arguments at compile time.
	
	11.8
	
	

	(
	
	Test the presence of an attribute with the IsDefined method instead of GetCustomAttribute or GetCustomAttributes.
	
	11.9
	
	

	(
	
	Favor the Assembly.Load method over the LoadFrom or LoadFile methods when loading an assembly to reflect on it.
	
	11.10
	
	

	(
	
	Never use the Assembly.LoadWithPartialName method.
	
	11.10
	
	

	(
	
	Never take control flow decisions based on the the StackTrace object.
	
	11.11
	
	

	(
	
	Use methods of the FieldInfo, PropertyInfo, MethodInfo, ConstructorInfo, and EventInfo types instead of the Type.InvokeMember method.
	
	11.12
	
	

	
	
	
	
	
	
	

	
	12. Fields and Variables
	
	
	
	

	(
	
	Use PascalCase, avoid underscores and names longer than 15 characters in public fields.
	
	12.1a,c
	
	

	(
	
	Use camelCase for private fields and local variables.
	
	12.1b
	
	

	(
	
	Use meaningful names for fields and variables; don't use abbreviations.
	
	12.1d
	
	

	(
	
	Avoid look-alike letters and digits (e.g. uppercase O and zero).
	
	12.1e
	
	

	(
	
	Use uppercase for 1- and 2-character constant names; Use PascalCase for constant names of 3 characters or more.
	
	12.2a, b
	
	

	(
	
	Use all-uppercase names for private constants used as arguments to Windows API functions.
	
	12.2c
	
	optional

	(
	
	Don't use Hungarian notation for fields, variables, and constants, except for common .NET types and controls.
	
	12.3
	
	

	(
	
	Use the following prefixes for variables holding generic .NET objects: att (Attribute), del (Delegate), ex (Exception), obj (Object), per (Permission), st (Stream).
	
	12.4
	
	

	(
	
	Use the following prefixes for variables holding common .NET objects: asm (Assembly), ci (CultureInfo), fs (FileStream), re (Regex), sb (StringBuilder), ty (Type).
	
	12.4
	
	

	(
	
	Use explicit scope qualifier for private fields.
	
	12.5
	
	

	(
	
	Don't declare two or more variables on the same line.
	
	12.6
	
	

	(
	
	Never hardcode a numeric or string value in code; use read-only fields or constants instead.
	
	12.7
	
	

	(
	
	Mark a field as read-only if it isn't supposed to change after instantiation.
	
	12.8
	
	

	(
	
	Never define public instance fields; instead, expose public or protected properties that wrap a private field.
	
	12.9
	
	

	(
	
	Mark all public static fields as read-only (or use a constant if possible).
	
	12.10
	
	

	(
	
	Never define a protected field; use a wrapping property with protected scope instead.
	
	12.11
	
	

	(
	
	Declare all local variables at the beginning of the method, except block variables and variables wrapped by properties.
	
	12.12
	
	

	(
	
	Don't use Static local variables.
	VB
	12.13
	
	

	(
	
	Declare a variable inside a block, if the variable isn't used elsewhere.
	
	12.14
	
	

	(
	
	Always explicitly initialize block variables.
	VB
	12.15
	
	

	(
	
	Use m_ prefix for private fields wrapped by a property.
	
	12.16
	
	

	(
	
	Use _ prefix for private fields wrapped by a property.
	
	12.16
	
	alternate

	(
	
	Place the definition of a variable wrapped by a property immediately before the definition of the property.
	
	12.17
	
	

	(
	
	Never reference directly a field wrapped by a property; instead, reference the property.
	
	12.18
	
	

	(
	
	Favor initializers to explicit assignment inside a constructor, if the type has only one constructor.
	
	12.19a
	
	

	(
	
	Initialize fields in the constructor if initialization order is significant.
	
	12.19b
	
	

	(
	
	Ensure that a field is initialized inside only one constructor; use constructor chaining if necessary.
	
	12.19c
	
	

	(
	
	Use the "As New" concise syntax for object instantiation.
	VB
	12.20
	
	

	(
	
	Use the DirectCast operator instead of the CType operator if possible.
	VB
	12.21
	
	

	(
	
	Avoid the = (assignment) operator inside expressions.
	C#
	12.22
	
	

	(
	
	Use the as operator instead of combining is+casting.
	C#
	12.23
	
	

	(
	
	Use the With keyword when accessing multiple members of a nested object.
	VB
	12.24
	
	

	(
	
	Use temporary variables when repeatedly accessing the members of a nested object.
	C#
	12.25
	
	

	(
	
	Always mark non-serialized fields with the NonSerialized attribute, even if the type isn't serialized.
	
	12.26
	
	

	(
	
	Always mark IntPtr fields as private, protected, or read-only.
	
	12.27
	
	

	
	
	
	
	
	
	

	
	13. Properties
	
	
	
	

	(
	
	Use PascalCase for property names, avoid underscores and names longer than 15 characters.
	
	13.1
	
	

	(
	
	Keep size of property procedures as small as possible.
	
	13.2
	
	

	(
	
	Use compact formatting for get/set blocks in properties.
	C#
	13.3
	
	optional

	(
	
	In the set block of a property procedure, compare incoming and current values and do the assignment only if they differ.
	
	13.4
	
	

	(
	
	Use a read-only property only if returning a private non-array field or the result of a simple calculation; in all other cases, use a method.
	
	13.5
	
	

	(
	
	Define a Set-prefixed method with private or internal/Friend visibility for each read-only public property; make this method overridable if the property is also overridable.
	
	13.6
	
	

	(
	
	Never define write-only properties; use Set-prefixed methods instead.
	
	13.7
	
	

	(
	
	Avoid properties with two or more arguments.
	
	13.8
	
	

	(
	
	Use only String or Int32 arguments with properties.
	
	13.8
	
	

	(
	
	Mark properties with arguments with the Default keyword.
	VB
	13.9
	
	

	(
	
	Don't define multiple properties with arguments with different names.
	VB
	13.9
	
	

	(
	
	Don't define properties with arguments marked with the Shared keyword.
	VB
	13.9
	
	

	(
	
	Use the value keyword only inside the set block of a property.
	C#
	13.10
	
	

	(
	
	Apply the IndexerName attribute to the this property if Visual Basic clients should see for this property a name other than "Item".
	C#
	13.11
	
	

	(
	
	Use Is-prefixed names only for read-only Boolean properties.
	
	13.12
	
	

	(
	
	Don't define a read-only property that returns an array; instead, use a property with an argument.
	
	13.13
	
	

	(
	
	If a property return a collection, make the property read-only.
	
	13.14
	
	

	
	
	
	
	
	
	

	
	14. Methods
	
	
	
	

	(
	
	Use PascalCase for method names; avoid underscores and names longer than 25 characters for public methods.
	
	14.1a, b
	
	

	(
	
	Use consistent verb-noun syntax for method names.
	
	14.1.c
	
	

	(
	
	Avoid methods longer than 50 executable statements.
	
	14.2
	
	

	(
	
	Avoid methods with more than 6 arguments.
	
	14.3
	
	

	(
	
	Use camelCase for parameter names; avoid prefixes that indicate the parameter type (a la Hungarian notation).
	
	14.4
	
	

	(
	
	Don't define reserved parameters.
	
	14.5
	
	

	(
	
	Use parameters typed after a base class or an interface if possible, to improve code reuse.
	
	14.6
	
	

	(
	
	Validate arguments at the top of the method; throw ArgumentException or ArgumentNullException if invalid.
	
	14.7
	
	

	(
	
	Use explicit ByVal keyword for arguments passed by value.
	VB
	14.8
	
	

	(
	
	Avoid reference type arguments passed by reference.
	
	14.9
	
	

	(
	
	Use the out keyword for output-only arguments.
	C#
	14.10
	
	

	(
	
	Avoid multiple arguments passed by reference; instead, return an object.
	
	14.11
	
	

	(
	
	Don't define optional arguments in public methods.
	VB
	14.12
	
	

	(
	
	Use a typed array when defining a params/ParamArray argument, if possible.
	
	14.13
	
	

	(
	
	Consider replacing 3 or more parameters of same type with a params/ParamArray parameter.
	
	14.14
	
	

	(
	
	For each method taking a params/ParamArray argument, consider providing special-case overloaded versions with fewer arguments.
	
	14.15
	
	

	(
	
	Define a single exit point for all methods, except special cases that are dealt with at the top of the method.
	
	14.16
	
	

	(
	
	Exit a function with the Return keyword.
	
	14.17
	
	

	(
	
	Exit a sub with the Return keyword.
	
	14.17
	
	optional

	(
	
	Use parenthesis to enclose an expression returned by a function; don't use parenthesis to return a single value.
	
	14.18
	
	

	(
	
	Provide overloaded variants of a method to avoid boxing.
	
	14.19
	
	

	(
	
	Provide overloaded variants of a method to reduce number of arguments.
	
	14.20
	
	

	(
	
	Don't define overloaded methods that differ by only the out, ref (or no) keyword applied to their arguments.
	C#
	14.21
	
	

	(
	
	Chain overloaded versions of a method to reduce amount of code in each method.
	
	14.22
	
	

	(
	
	Don't define more than 64 local variables in a method.
	
	14.23
	
	

	(
	
	Use Get prefix for methods that evaluate and return a value.
	
	14.24
	
	

	(
	
	Don't define Get-prefixed methods if the name following the prefix matches the name of a property.
	
	14.25
	
	

	(
	
	Define one or more Set-prefixed methods that enable clients to assign multiple properties in one operation.
	
	14.26
	
	

	(
	
	Use the BaseName+ReturnedType naming syntax for a group of methods that differ only for the type of their return value.
	
	14.27
	
	

	(
	
	Use the Create prefix for factory methods.
	
	14.28
	
	

	(
	
	Don't define factory methods that take a Type parameter.
	
	14.29
	
	

	(
	
	Avoid overloading of a binary operator in a reference type.
	C#
	14.30
	
	

	(
	
	Override the Equals method if you overload the == and != operators.
	C#
	14.31
	
	

	(
	
	Don't modify arguments passed to a method that overloads an operator.
	C#
	14.32
	
	

	(
	
	When you overload one or more operators, define alternative methods that perform the same operation as the overloaded operators.
	C#
	14.33
	
	

	(
	
	Override the ToString method to return a textual representation of the current state of a type.
	
	14.34a
	
	

	(
	
	Use ToXxxx name for instance methods to convert current object to another type.
	
	14.34b
	
	

	(
	
	Use FromXxxx name for static methods to convert from another type into a new instance of current type.
	
	14,34c
	
	

	(
	
	Use a Parse name for a static method to convert from string to a new instance of current type.
	
	14.34d
	
	

	(
	
	Use a TryParse name for a static method that attempts to convert a string to a new instance of current type.
	
	14.34e
	
	

	(
	
	Use parameters and return values of System.Uri type if they represent a URI.
	
	14.35
	
	

	
	
	
	
	
	
	

	
	15. Constructors
	
	
	
	

	(
	
	Constructor parameters should have same name as the private fields they are assigned to (except for casing).
	
	15.1
	
	

	(
	
	Keep constructors as small as possible; defer complex initialization and validation chores to when a feature is actually used.
	
	15.2
	
	

	(
	
	Values passed to a constructor and assigned to a writable property are validated inside the set block of the property.
	
	15.3
	
	

	(
	
	Values passed to a constructor and assigned to a readonly field are validated inside the constructor.
	
	15.4
	
	

	(
	
	Values passed to a constructor and assigned to a readonly property are validated in a Set-prefixed private method.
	
	15.4
	
	

	(
	
	Always add an explicit parameterless constructor.
	
	15.5
	
	

	(
	
	Define one constructor with the smallest set of arguments that create an instance in a valid state.
	
	15.6
	
	

	(
	
	Define zero or more additional constructors that take additional arguments and that can be used to reduce code in client.
	
	15.7
	
	

	(
	
	Define a private parameterless constructor in types that contain only static methods.
	
	15.8
	
	

	(
	
	Define an empty constructor with internal/Friend scope for types that must appear as noninstantiable to code outside the current assembly.
	
	15.9
	
	

	(
	
	Define an empty constructor with protected internal/Protected Friend scope for types that must appear as sealed to code outside the current assembly.
	
	15.10
	
	

	(
	
	Assign values to static fields by means of initializers rather than a static constructor, unless assignment order is significant.
	
	15.11
	
	

	(
	
	Avoid static constructors in value types.
	
	15.12
	
	

	(
	
	Constructors with fewer parameters should delegate to constructors with more parameters, if possible.
	
	15.13
	
	

	(
	
	Constructor with more parameters should delegate to constructors with fewer parameters if parameters have no default value.
	
	15.14
	
	

	(
	
	Define a private constructor if it can help reduce the amount of code in constructors with arguments.
	
	15.15
	
	

	(
	
	Implement the IDisposable interface if a type's constructor takes a disposable object.
	
	15.16
	
	

	(
	
	If a constructor takes a disposable parameter, add a parameter named leaveOpen if the disposable object should be left open when the current instance is disposed of.
	
	15.16
	
	

	(
	
	Never invoke a virtual method from inside a constructor.
	
	15.17
	
	

	(
	
	Throw an exception from inside a constructor if one or more arguments aren't valid.
	
	15.18
	
	

	(
	
	If a type has a Finalize method, attempt to assign all fields before throwing an exception from inside a constructor.
	
	15.18
	
	

	(
	
	Ensure that you catch all exceptions in static constructors.
	
	15.19
	
	

	
	
	
	
	
	
	

	
	16. Dispose and Finalize methods
	
	
	
	

	(
	
	Implement the IDisposable interface if a type creates disposable objects without destroying them when the method exits.
	
	16.1
	
	

	(
	
	Implement both the IDisposable interface and the Finalize method if the type creates an unmanaged resource.
	
	16.2
	
	

	(
	
	Implement the Finalize (but not the IDisposable interface) if the type needs a notification when its being destroyed but doesn't create either a disposable or an unmanaged resource.
	
	16.3
	
	

	(
	
	Create disposable objects inside using blocks.
	C#
	16.4
	
	

	(
	
	Create disposable objects in a Try block and dispose them in the Finally block.
	VB
	16.5
	
	

	(
	
	Implement a public Close method (that maps to a private Dispose method) if a disposable object exposes an Open method.
	
	16.6
	
	

	(
	
	Code in Finalize method can access only handles to unmanaged resources; in no case it should access a reference type field.
	
	16.7
	
	

	(
	
	Wrap the body of the Finalize method in a Try block and call the MyBase.Finalize method from inside the Finally block.
	VB
	16.8
	
	

	(
	
	Never throw an exception from inside the Dispose (or Close) method if the object has been already disposed of.
	
	16.9
	
	

	(
	
	All members other than Dispose (or Close) must throw an ObjectDisposedException if called after the object has been already disposed of.
	
	16.9
	
	

	(
	
	Adopt the recommended Dispose-Finalize pattern in disposable objects that wrap unmanaged resources.
	
	16.10
	
	

	(
	
	Protect the Dispose (or Close) method from concurrent access by means of a lock/SyncLock block.
	
	16.10
	
	

	(
	
	Override the protected Dispose(bool) method in types that derive from a disposable type that implements the Dispose-Finalize pattern.
	
	16.11
	
	

	
	
	
	
	
	
	

	
	16. Delegates and Events
	
	
	
	

	(
	
	Use PascalCase for delegate and event names. Avoid underscores and names longer than 25 characters.
	
	17.1
	
	

	(
	
	Use the EventNameEventArgs name for types that derive from EventArgs.
	
	17.2
	
	

	(
	
	Use the EventNameEventHandler name for a delegate that defines an event.
	
	17.3a
	
	

	(
	
	Use the MethodNameFilter name for a delegate that defines a callback filter for a method.
	
	17.3b
	
	

	(
	
	Use the MethodNameCallback name for a delegate that defines a callback method meant to notify that something has happened.
	
	17.3c
	
	

	(
	
	Don't use Delegate as a suffix for Delegate types.
	
	17.3d
	
	

	(
	
	Use gerund (-ing) tense for events raised before something occurs; use past tense for events raised after something has occurred.
	
	17.4
	
	

	(
	
	Use the VariableName_EventName pattern for methods that handle events from a given variable.
	
	17.5
	
	

	(
	
	Mark event handlers as private or internal/Friend.
	
	17.6
	
	

	(
	
	Assign a delegate to a variable and test the variable for null/Nothing before invoking the delegate.
	
	17.7
	
	

	(
	
	Use interfaces instead of delegates to implement a callback mechanism in time-critical code.
	
	17.8
	
	

	(
	
	Assign delegate variables with AddressOf expressions rather than explicitly creating a delegate object.
	VB
	17.9
	
	

	(
	
	Events have two parameters: an object value named sender and an EventArgs-derived parameter named e.
	
	17.10
	
	

	(
	
	Define events by means of delegates; use standard delegates if possible (e.g. EventHandler and CancelEventHandler).
	VB
	17.11
	
	

	(
	
	Events must have no return type
	
	17.12
	
	

	(
	
	Assign an event variable to a temporary delegate and test the delegate against null before raising the event.
	C#
	17.13
	
	

	(
	
	Always unsubscribe events before letting an object go out of scope.
	
	17.14
	
	

	(
	
	Use PropertyNameChanging and PropertyNameChanged names for events that notify when a property changes.
	
	17.15
	
	

	(
	
	Raise events from inside a protected virtual method named OnEventName whose only argument is a EventArgs-derived object.
	
	17.16
	
	

	(
	
	Compare the hidden EventNameEvent field with Nothing before calling the OnEventName protected overridable method that raises the event.
	VB
	17.17
	
	

	(
	
	Subscribe to events by means of AddHandler command rather than by means of WithEvents variables.
	VB
	17.18
	
	

	(
	
	Code inside event handlers must not cache property values while the event is raised.
	
	17.19
	
	

	(
	
	Avoid raising events from a thread other than the thread that created the object.
	
	17.20
	
	

	(
	
	Expose the SynchronizingObject property if an object is able to raise an event from a secondary thread.
	
	17.21
	
	

	(
	
	Never raise an event from inside the Finalize method.
	
	17.22
	
	

	(
	
	Implement the ISerializable interface for serializable objects that raise events. (Use the helper methods provided.)
	
	17.23
	
	

	
	
	
	
	
	
	

	
	18. Execution Flow
	
	
	
	

	(
	
	Don't type multiple statements in one line.
	
	18.1
	
	

	(
	
	Use an empty pair of parenthesis when invoking a method with no arguments.
	VB
	18.2
	
	

	(
	
	Invoke Shared (static) methods through the type name rather than an instance variable.
	VB
	18.3
	
	

	(
	
	Use the module name when invoking methods in a Module.
	VB
	18.4
	
	

	(
	
	Avoid single-line If statements.
	VB
	18.5
	
	

	(
	
	Use single-line If statements only if the Then portion contains only one statement.
	VB
	18.5
	
	alternate

	(
	
	Use curly braces also for if, else if, for, foreach, and while blocks that contain a single line.
	C#
	18.6
	
	

	(
	
	Don’t use curly braces for if, else if, for, foreach, and while blocks that contain a single line, but ensure that the statement is correctly indented.
	C#
	18.6
	
	alternate

	(
	
	Don’t nest conditional and loop blocks to more than three levels, or four levels in exceptional cases.
	
	18.7
	
	

	(
	
	Use AndAlso and OrElse operators when combining Boolean conditions.
	VB
	18.8
	
	

	(
	
	Avoid comparisons with true and false Boolean values.
	
	18.9
	
	

	(
	
	Use a direct assignment of the result of a Boolean expression instead of an if/else block.
	
	18.10
	
	

	(
	
	Avoid using the ? : ternary operator inside expressions
	C#
	18.11
	
	

	(
	
	Avoid using the IIf function in time-critical code or if one of its operands is a function call.
	VB
	18.12
	
	

	(
	
	Double-check statements that test the type of an object.
	
	18.13
	
	

	(
	
	Favor a Select Case block instead of an If statement when testing the same variable against four or more values or ranges of values.
	VB
	18.14
	
	

	(
	
	Don't include multiple statements on the same line as the Case keyword.
	VB
	18.15
	
	

	(
	
	Test the most frequent values near the top of a switch/Select Case block.
	
	18.16
	
	

	(
	
	Include a default clause in a switch block (C#) or a Case Else clause in a Select Case block (Visual Basic). Include a Debug.Assert statement or throw an exception if necessary.
	
	18.17
	
	

	(
	
	Never use the GoTo statement except to avoid defining deeply nested If statements.
	VB
	18.18
	
	

	(
	
	Don't use the goto statement except to jump to another case block or to the default block in a switch statement.
	C#
	18.19
	
	

	(
	
	Declare the controlling variable of a For and For Each loop inside the loop.
	VB
	18.20
	
	

	(
	
	Always explicitly test the controlling variable in For loops against the array’s Length property.
	
	18.21
	
	

	(
	
	Don’t modify the controlling variable in the body of a for loop.
	
	18.22
	
	

	(
	
	Don't use a floating-point variable as the controlling variable of a for loop
	
	18.23
	
	

	(
	
	If a subexpression doesn’t change inside a loop, assign it to a temporary variable outside the loop and use the temporary variable inside the loop.
	
	18.24
	
	

	(
	
	Don’t use While...End While loops.
	VB
	18.25
	
	

	(
	
	Avoid unsafe code if possible; if you must use unsafe code, place all your unsafe methods in a DLL.
	C#
	18.26
	
	

	
	
	
	
	
	
	

	
	19. Exception handling
	
	
	
	

	(
	
	Use ex for Exception variables appearing in try...catch blocks.
	
	19.1
	
	

	(
	
	Use ex prefix for all exception variables outside try...catch blocks.
	
	19.1
	
	

	(
	
	Use Exception suffix for custom exception types
	
	19.2
	
	

	(
	
	Don't use On Error Goto and On Error Resume Next statements.
	VB
	19.3
	
	

	(
	
	Don't throw exceptions to control execution flow, e.g. exit a procedure prematurely.
	
	19.4
	
	

	(
	
	Throw exceptions that are as specific as possible.
	
	19.5
	
	

	(
	
	Don't throw exceptions from inside Dispose and Close methods, even if the object has been already disposed of.
	
	19.6
	
	

	(
	
	Use complete sentences with a trailing period in exception messages.
	
	19.7
	
	

	(
	
	Don't expose confidential information in exception messages.
	
	19.7
	
	

	(
	
	Read error messages from resource files, if messages are displayed to end users.
	
	19.8
	
	optional

	(
	
	Use XML remarks to document which exceptions a method can throw.
	C#
	19.9
	
	

	(
	
	Use standard remarks to document which exceptions a method can throw.
	VB
	19.10
	
	

	(
	
	Expose virtual/Overridable Can-prefixed readonly properties that let clients test whether an operation can be completed without throwing an exception.
	
	19.11
	
	

	(
	
	Sort Catch blocks so that more specific exceptions are tested before generic ones.
	VB
	19.12
	
	

	(
	
	Use When clauses to define more granular exception filters.
	VB
	19.13
	
	

	(
	
	Don't assign a return value in a Finally block.
	VB
	19.14
	
	

	(
	
	Restore previous program state in Catch blocks.
	
	19.15
	
	

	(
	
	Don’t catch SystemException and ApplicationException objects.
	
	19.16
	
	

	(
	
	Avoid catching DivideByZeroException objects.
	
	19.17
	
	

	(
	
	Don’t catch the following exceptions except for logging reasons: OutOfMemoryException, StackOverflowException, ThreadAbortException, and ExecutionEngineException.
	
	19.18
	
	

	(
	
	In an interface method or a method that overrides a base class method, throw a NotSupportedException if your type isn’t expected to implement the corresponding feature.
	
	19.19
	
	

	(
	
	Throw a NotImplementedException if your type hasn’t yet implemented a feature, but a future version (or a derived type) might do it.
	
	19.19
	
	

	(
	
	Don’t catch exceptions inside class libraries unless you rethrow them.
	
	19.20
	
	

	(
	
	Handle generic Exception objects and rethrow the original exception in the last catch block.
	
	19.21
	
	

	(
	
	Pass the original exception to the new exception’s constructor when you rethrow an exception that is different from the exception that your code caught.
	
	19.22
	
	

	(
	
	Log all nonfatal exceptions so that they can be viewed while the application is running.
	
	19.23
	
	

	(
	
	Log all fatal exceptions to a durable medium.
	
	19.23
	
	

	(
	
	Avoid defining custom exception types if you can get along with the exception classes defined in the .NET Framework.
	
	19.24
	
	

	(
	
	A custom exception type must inherit from ApplicationException and be marked with the Serializable attribute.
	
	19.25
	
	

	(
	
	A custom exception type must expose four public constructors (including the constructor implied by ISerializable).
	
	19.26
	
	

	(
	
	Ensure that constructors of a custom exception type don’t throw any exceptions.
	
	19.27
	
	

	(
	
	If a custom exception type exposes additional fields, expose them as readonly properties, define a constructor that accepts them, and serialize them in the GetObjectData method.
	
	19.28
	
	

	(
	
	If you define one or more custom exception types, inherit them from a serializable custom exception class named CompanyNameException that inherits from ApplicationException,
	
	19.29
	
	

	
	
	
	
	
	
	

	
	20. Numeric types
	
	
	
	

	(
	
	Define and use constants instead of numbers (other than natural constants such as zero or one).
	
	20.1
	
	

	(
	
	Use constants only if a value isn't expected to change in future versions.
	
	20.1
	
	

	(
	
	Use 32-bit integers for individual variables, unless you need the broader range offered by 64-bit integers.
	
	20.2
	
	

	(
	
	Use 16-bit integers for arrays, if possible.
	
	20.2
	
	

	(
	
	Use CLS-compliant integer types if possible.
	
	20.3
	
	

	(
	
	Compile with the Check For Arithmetic Overflow/Underflow option disabled, but use the checked keyword as needed.
	C#
	20.4
	
	

	(
	
	Use .NET native methods instead of Visual Basic–specific math functions.
	VB
	20.5
	
	

	(
	
	Use shortened notation (e.g. x+=1) for simple increment/decrement operations.
	
	20.6
	
	

	(
	
	Use ++ and -- operators only inside expressions located in performance-critical code..
	C#
	20.7
	
	

	(
	
	Avoid using ++ and -- operators on a variable that appears more than once in the expression.
	C#
	20.8
	
	

	(
	
	Avoid converting Boolean values to integers for use in expression.
	
	20.9
	
	

	(
	
	Use >> and << shift operators instead of * and \ to process bit-coded values.
	VB
	20.10
	
	

	(
	
	Use \ division operator with integer operands, / operator with floating-point operands.
	VB
	20.11
	
	

	(
	
	Use Decimal variables when dealing with currency values and to avoid rounding errors.
	
	20.12
	
	

	(
	
	Avoid using Decimal values in time-critical code that perform math operations other than additions and subtractions.
	
	20.12
	
	

	(
	
	Use Double type for individual floating-point variables.
	
	20.13
	
	

	(
	
	Use Single type for arrays of floating-point values, if their limited precision and range is ok.
	
	20.13
	
	

	(
	
	Avoid using the equality operator or the Equals method to compare single-precision or double-precision values.
	
	20.14
	
	

	(
	
	Avoid ^ operator and Int function with integer operands.
	VB
	20.15
	
	

	(
	
	Use multiplications instead of divisions in performance-critical code sections.
	
	20.16
	
	

	(
	
	Use a series of multiplications instead of exponentiation if the exponent is a small integer.
	
	20.17
	
	

	
	
	
	
	
	
	

	
	21. Strings
	
	
	
	

	(
	
	Use resource files for strings that are used in the user interface.
	
	21.1
	
	

	(
	
	Use the & operator instead of the + operator to concatenate strings.
	VB
	21.2
	
	

	(
	
	Use Char variables for one-char strings.
	
	21.3
	
	

	(
	
	Explicitly initialize strings to "" value.
	
	21.4
	
	

	(
	
	When splitting a long string constant in multiple lines, begin each line with the concatenation operator.
	
	21.5
	
	

	(
	
	String methods and properties must return an empty string rather than a null string if the result has no characters.
	
	21.6
	
	

	(
	
	Use .NET native methods rather than Visual Basic-specific string functions.
	VB
	21.7
	
	

	(
	
	Use verbatim (@) strings when defining constants that contain the backslash (\) character or spans multiple lines and that doesn’t contain any other control character except CR-LF.
	C#
	21.8
	
	

	(
	
	Consider using the Regex.Unescape method to define string constants that contain control characters, unless inside time-critical code.
	VB
	21.9
	
	

	(
	
	Favor the ChrW function over the Chr function.
	VB
	21.10
	
	

	(
	
	Use the Chars property in a For loop instead of a more elegant, but slower For Each loop.
	VB
	21.11
	
	

	(
	
	Always check that string arguments aren’t null object references before using them.
	
	21.12
	
	

	(
	
	Check that a string has no characters by comparing its Length property with zero.
	
	21.13
	
	

	(
	
	Use the String.Compare method to compare strings in case-insensitive mode.
	
	21.14
	
	

	(
	
	Use the String.Compare method to check whether a string is less than, equal to, or greater than another string.
	
	21.15
	
	

	(
	
	Use the CompareOrdinal static method when comparing strings for equality in case-sensitive, locale-independent mode.
	
	21.16
	
	

	(
	
	Use regular expressions to perform nontrivial string searches.
	
	21.17
	
	

	(
	
	Use regular expressions to validate strings typed by the user or read from files.
	
	21.18
	
	

	(
	
	Use the String.Format method to concatenate a fixed number of string constants and variables.
	
	21.19
	
	

	(
	
	Use the StringBuilder object to concatenate a variable number of strings or to concatenate strings inside a loop.
	
	21.20
	
	

	(
	
	Initialize the StringBuilder’s internal buffer if you know in advance a reasonable upper limit to the size of the result.
	
	21.21
	
	

	(
	
	Don’t append more characters to a StringBuilder after you’ve invoked its ToString method.
	
	21.22
	
	

	(
	
	Read a string from the configuration file if its value might change after deployment.
	
	21.23
	
	

	(
	
	Consider whether you should initialize the current thread's culture before performing string parsing and formatting.
	
	21.24
	
	

	(
	
	Create a global CultureInfo object and pass it to all ToString and Parse methods that need to work with nondefault locale settings.
	
	21.25
	
	

	
	
	
	
	
	
	

	
	22. Arrays and Collections
	
	
	
	

	(
	
	Use one of the following prefixes for array and collection variables: arr (Array), al (ArrayList), ht (Hashtable), st (Stack), qu (Queue), sl (SortedList), col (generic collection)
	
	22.1
	
	

	(
	
	Use the Collection suffix for collection types that inherit from CollectionBase or ReadOnlyCollectionBase, or that implement the IList interface
	
	22.2a
	
	

	(
	
	Use the Dictionary suffix for collection types that inherit from DictionaryBase or that implement the IDictionary interface
	
	22.2b
	
	

	(
	
	Use the Queue suffix for queue-like collection types.
	
	22.2c
	
	

	(
	
	Use the Stack suffix for stack-like collection types.
	
	22.2d
	
	

	(
	
	Don't use array with a nonzero lower index.
	
	22.3
	
	

	(
	
	Favor one-dimensional arrays to collections in performance-critical code, especially when storing value type elements.
	
	22.4
	
	

	(
	
	Initialize array elements in the array declaration if possible.
	
	22.5
	
	

	(
	
	Favor jagged arrays to standard 2-dim arrays, especially if its rows may contain different number of items.
	
	22.6
	
	

	(
	
	Use ArrayList or Hashtable objects instead of the VB Collection object.
	VB
	22.7
	
	

	(
	
	Methods and properties return zero-element arrays or collection rather than null object references.
	
	22.8
	
	

	(
	
	Use For loops to iterate over all the elements of an array
	
	22.9
	
	

	(
	
	Use foreach/For Each loops to iterate over all the elements of a collection.
	
	22.9
	
	

	(
	
	When iterating over all the elements of a 2-dim array, the outer loop cycles over rows and the inner loop cycles over columns.
	
	22.10
	
	

	(
	
	Consider using a BitArray object instead of a large array of Boolean values.
	
	22.11
	
	

	(
	
	Use a public read-only property that returns a strong-typed collection rather than a generic collection to implement a one-to-many relationship between two types
	
	22.12
	
	

	(
	
	Specify an initial capability for ArrayList, Hashtable, SortedList, Queue, and Stack objects, if possible.
	
	22.13
	
	

	(
	
	Avoid specifying the growth factor argument in the constructor of Hashtable and Queue objects.
	
	22.14
	
	

	(
	
	Use the AddRange and InsertRange methods to add multiple elements to.NET collections that expose these methods, e.g. ArrayList.
	
	22.15
	
	

	(
	
	Don't use a SortedList object if possible; consider loading elements in a Hashtable and then passing the Hashtable to the SortedList's constructor.
	
	22.16
	
	

	(
	
	Use the methods of the CollectionsUtil class to create case-insensitive dictionaries.
	
	22.17
	
	

	(
	
	Use foreach/For Each loops with a DictionaryEntry controlling variable to iterate over all the elements of a Hashtable or a SortedList.
	
	22.18
	
	

	(
	
	CollectionBase-derives types implement the Add, Remove, and Item members, and override the OnValidate protected method.
	
	22.19
	
	

	(
	
	DictionaryBase-derived types implement the Add, Remove, Contains, and Item members and should the OnValidate protected method.
	
	22.20
	
	

	(
	
	Define zero-based indexers when implementing a custom collection class.
	
	22.21
	
	

	
	
	
	
	
	
	

	
	23. Memory usage
	
	
	
	

	(
	
	Objects that are meant to live for the entire duration of the application lifetime should be created as early as possible.
	
	23.1
	
	

	(
	
	Don't box value-typed objects unnecessarily.
	
	23.2
	
	

	(
	
	Don’t explicitly set an object reference to null when you don’t need it any longer inside a method.
	
	23.3
	
	

	(
	
	Explicitly set an object reference to null if you are inside a loop and want the .NET runtime to collect the object before the loop ends.
	
	23.4
	
	

	(
	
	Use the GC.KeepAlive method to keep an object alive until the current method completes.
	
	23.5
	
	

	(
	
	Never explicitly invoke the GC.Collect method in server-side applications (except for testing and debugging purposes).
	
	23.6
	
	

	(
	
	Use GC.Collect method judiciously in client-side applications and only at the conclusion of a time-consuming operation such as file load or save.
	
	23.7
	
	

	(
	
	Always use the GC.WaitForPendingFinalizers method after invoking the GC.Collect method.
	
	23.8
	
	

	(
	
	Don’t frequently create and destroy objectslarger than 85,000 bytes.
	
	23.9
	
	

	(
	
	Consider splitting large objects into two or more objects smaller than 85,000 bytes.
	
	23.9
	
	

	(
	
	If you have a finalizable object consider splitting it into two separate types, one wrapping the unmanaged resource and the other containing managed variables.
	
	23.10
	
	

	(
	
	Always wrap WeakReference objects in a custom type.
	
	23.11
	
	

	(
	
	Carefully consider using nondefault settings for the garbage collector.
	
	23.12
	
	

	
	
	
	
	
	
	

	
	24. Files, streams, and XML
	
	
	
	

	(
	
	Use the Stream suffix for types that inherit from System.IO.Stream.
	
	24.1
	
	

	(
	
	Use methods in the Path type to extract, modify, and combine directory and filenames.
	
	24.2
	
	

	(
	
	Don't burn absolute file paths in code.
	
	24.3
	
	

	(
	
	Use files paths relative to the application’s directory or one of the directories returned by the Environment.GetFolderPath method.
	
	24.3
	
	

	(
	
	Don't place user files in the application’s directory; instead, use the directory returned by the Environment.GetFolderPath method.
	
	24.4
	
	

	(
	
	Use the Path.GetTempFileName method to create a unique temporary file and delete it when the application terminates.
	
	24.5
	
	

	(
	
	Read a text file with the StreamReader.ReadToEnd method if possible.
	
	24.6
	
	

	(
	
	Read files larger than 8K in chunks if you can process it one piece at a time.
	
	24.6
	
	

	(
	
	Explicitly close a StreamWriter or a BinaryWriter object, rather than just closing the underlying Stream object.
	
	24.7
	
	

	(
	
	Create file associations for data files created by your application, if these files can be created outside the application’s folder.
	
	24.8
	
	

	(
	
	If you have registered a file extension, add used data files to the recent document list maintained by the operating system.
	
	24.9
	
	

	(
	
	Consider using isolated storage for saving user preferences and other configuration data.
	
	24.10
	
	

	(
	
	Use the XmlTextWriter object to produce XML text, rather than manually outputting text.
	
	24.11
	
	

	(
	
	In server-side applications, use XmlTextReader and XmlTextWriter objects to process large XML files instead of the XmlDocument object.
	
	24.12
	
	

	(
	
	Use the SelectNodes or the SelectSingleNode method to find specific nodes in an XmlDocument object.
	
	24.13
	
	

	(
	
	Account for time zone information when serializing and deserializing DateTime values by means of a SoapFormatter or XmlSerializer object.
	
	24.14
	
	

	
	
	
	
	
	
	

	
	25. PInvoke and COM Interop
	
	
	
	

	(
	
	Use the DllImport attribute instead of the Declare statement.
	VB
	25.1
	
	

	(
	
	Expose all the external procedures as public methods of a type with internal/Friend scope.
	
	25.2
	
	

	(
	
	If the external procedure takes StringBuilder or other objects that require initialization, define the external procedure as private and wrap it in a public method.
	
	25.2
	
	

	(
	
	Use the IntPtr type for parameters and return values that correspond to Windows handles and system integers.
	
	25.3
	
	

	(
	
	Set the SetLastError option to true when invoking an external method that sets the Win32 error.
	
	25.4
	
	

	(
	
	Use the Marshal.ReleaseComObject method to release and destroy a COM object explicitly.
	
	25.5
	
	

	(
	
	Use the TlbImp tool to generate a strong-name assembly with a version number.
	
	25.6
	
	

	(
	
	Check whether the publisher of a third-party COM component component has released a Primary Interop Assembly (PIA) for the component.
	
	25.7
	
	

	(
	
	Always provide a PIA for all COM components that you have authored.
	
	25.8
	
	

	(
	
	Keep the number of calls between .NET and COM applications as low as possible.
	
	25.9
	
	

	(
	
	If possible, call PInvoke and COM Interop methods that take and return values of blittable types.
	
	25.10
	
	

	(
	
	Use the CurrencyWrapper, UnknownWrapper, DispatchWrapper, or ErrorWrapper auxiliary types to pass a value correctly to a Variant argument in a COM method.
	
	25.11
	
	

	(
	
	Don't create a delegate object and pass it on the fly to an external procedure using PInvoke or COM Interop.
	
	25.12
	
	

	(
	
	When authoring a .NET component that is exposed to COM clients, mark public abstract classes with a ComVisible(false) attribute.
	
	25.13a
	
	

	(
	
	Avoid deep hierarchies in .NET classes, nested classes, and namespaces with more than two levels.
	
	25.13b
	
	

	(
	
	.NET classes exposed to COM client must have an implicit or explicit parameter-less constructor.
	
	25.13c
	
	

	(
	
	.NET classes exposed to COM client must not have static members.
	
	25.13d
	
	

	(
	
	.NET classes exposed to COM client must not have methods that take or return Int64 values.
	
	25.13e
	
	

	(
	
	.NET classes exposed to COM client must not have overloaded methods.
	
	25.13f
	
	

	(
	
	Use custom exception classes that set the HResult property for returning nonstandard error codes to COM clients.
	
	25.13g
	
	

	(
	
	.NET components exposed to COM clients have an assembly-level ComVisible(false) attribute, and a ComVisible(true) attribute for each class visible to COM.
	
	25.14
	
	

	(
	
	Mark the default property or method of the .NET class with the DispId(0) attribute.
	
	25.15
	
	

	(
	
	Use the ComClass attribute to expose a .NET class to COM clients, unless you must expose public fields and methods inherited from System.Object.
	VB
	25.16
	
	

	(
	
	Mark a .NET class with the ClassInterface(ClassInterfaceType.AutoDual) attribute to make it accessible to COM clients by means of both early and late binding.
	
	25.17
	
	

	(
	
	Define all the events of a class in a separate interface, mark that interface with a proper InterfaceType attribute, and mark the actual class with a ComSourceInterfaces.
	
	25.18
	
	

	(
	
	Mark two methods in a .NET class with the ComRegisterFunction and ComUnregisterFunction attributes if you need to run code at install and uninstall time.
	
	25.19
	
	

	
	
	
	
	
	
	

	
	26. Threading
	
	
	
	

	(
	
	Assign the Name property of the Thread.CurrentThread object and all the Thread objects you create.
	
	26.1
	
	

	(
	
	Set the IsBackground property of a Thread object to true for low-priority threads that don’t keep the application running.
	
	26.2
	
	

	(
	
	Never suspend or abort the current thread.
	
	26.3
	
	

	(
	
	Avoid Suspend, Resume, and Abort methods of the Thread object.
	
	26.3
	
	

	(
	
	Avoid using the GetCurrentThreadId method of the AppDomain class.
	
	26.4
	
	

	(
	
	Pass a zero argument to the Thread.Sleep method to give up remaining CPU time and force a thread context switch.
	
	26.5
	
	

	(
	
	Never use the Thread.Sleep method to synchronize threads.
	
	26.5
	
	

	(
	
	Use the Thread.Join method to wait until a different thread completes its job.
	
	26.6
	
	

	(
	
	Never call the Thread.Join method on the current thread.
	
	26.6
	
	

	(
	
	Ensure that two different threads don’t call the Join method on the other thread in a cyclic fashion.
	
	26.6
	
	

	(
	
	Don’t catch the ThreadAbortException.
	
	26.7
	
	

	(
	
	Don't delay the abortion of the thread by staying inside a Finally block.
	
	26.7
	
	

	(
	
	Use lock/SyncLock statements instead of Monitor’s static methods to synchronize access to a shared resource.
	
	26.8
	
	

	(
	
	Consider using a MethodImpl attribute to mark a method as synchronized, as opposed to using a lock/SyncLock block.
	
	26.9
	
	

	(
	
	When using nested lock/SyncLock statements, ensure that you follow the identical nesting sequence everywhere in the application.
	
	26.10
	
	

	(
	
	Use objects with private or internal/Friend scope as arguments in lock/SyncLock statements or in methods of the Monitor type.
	
	26.11
	
	

	(
	
	Use a private static field instead of a Type object as the argument to lock/SyncLock blocks that protect global resources.
	
	26.12
	
	

	(
	
	Never use an array or collection as an argument of a lock/SyncLock block; instead, use the value returned by the SyncRoot property.
	
	26.13
	
	

	(
	
	Consider using the Synchronized method of a collection to create a thread-safe wrapper object.
	
	26.14
	
	

	(
	
	Never directly access a Windows Forms control if there is any chance that the code is running in a thread different from the thread that created the control.
	
	26.15
	
	

	(
	
	Use the volatile keyword to mark fields that should be considered as volatile in a multithread environment.
	
	26.16
	
	

	(
	
	Use the recommended pattern for singleton objects that might be accessed by multiple threads.
	
	26.17
	
	

	(
	
	Use multiple Mutex objects to synchronize on multiple resources.
	
	26.18
	
	

	(
	
	Use ReaderWriterLock objects instead of Mutex objects when the resource to be synchronized complies with “read-write” semantics.
	
	26.19
	
	

	(
	
	Consider using the provided custom base class to encapsulate all low-level details in thread creation, argument passing, and access to resources that aren’t thread-safe
	
	26.20
	
	

	(
	
	Use asynchronous delegates instead of Thread objects in server-side applications and components.
	
	26.21
	
	

	(
	
	Consider exposing Beginxxxx and Endxxxx variants for each method that clients might want to invoke asynchronously and a Cancelxxxx method to let clients abort the operation.
	
	26.22
	
	

	(
	
	Use the System.Threading.Timer type when instantiating a timer object that must truly run in a background thread.
	
	26.23
	
	

	(
	
	Use the System.Windows.Forms.Timer type when you must periodically access a Windows Forms control.
	
	26.23
	
	

	
	
	
	
	
	
	

	
	27. Windows Forms applications
	
	
	
	

	(
	
	Use the MainForm name for the main form of a Windows Forms application.
	
	27.1a
	
	

	(
	
	Use the Form suffix for Windows Forms types that are displayed in modeless fashion.
	
	27.1b
	
	

	(
	
	Use the Dialog suffix for Windows Forms types that are displayed modally.
	
	27.1c
	
	

	(
	
	Include an App class (or a VB module) that contains a Main static method, and display the startup form from there.
	
	27.2
	
	

	(
	
	Always mark the entry point of a Windows Forms application with the STAThread attribute.
	
	27.3
	
	

	(
	
	Use standard prefixes for form and control names (see Table 27-1).
	
	27.4
	
	

	(
	
	Use a standard menu structure shortcut keys for MenuItem objects (see Table 27-2).
	
	27.5
	
	

	(
	
	Use standard prefixes for variables holding GDI+ objects (see Table 27-3).
	
	27.6
	
	

	(
	
	Use standard prefixes for variables Windows components (see Table 27-4).
	
	27.7
	
	

	(
	
	Don’t drop ADO.NET components on the form’s surface.
	
	27.8
	
	

	(
	
	Use private scope for controls and allow access to their properties via public properties if necessary.
	
	27.9
	
	

	(
	
	Never modify the autogenerated code in the InitializeComponent method in a form class.
	
	27.10
	
	

	(
	
	Don’t place business logic in form classes. Move business logic code into separate classes.
	
	27.11
	
	

	(
	
	Ensure that all the controls resize and move correctly when the end user resizes the form.
	
	27.12
	
	

	(
	
	Use scrolling forms only if you need a large workable area.
	
	27.13
	
	

	(
	
	Consider setting the form’s Localizable design-time property to true, even if you don’t need to localize the application.
	
	27.14
	
	

	(
	
	Have all the forms in your applications inherit from a base form class you have defined.
	
	27.15
	
	

	(
	
	Display floating tool windows and palette windows by invoking the main form’s AddOwnedForm method.
	
	27.16
	
	

	(
	
	Set the form’s DialogResult property from the code that handles a Button Click event rather than assigning it at design time.
	
	27.17
	
	

	(
	
	Use the .NET native MessageBox object instead of MsgBox command.
	VB
	27.18
	
	

	(
	
	Use the Application.EnableVisualStyles method to comply with to the current Windows XP theme.
	
	27.19
	
	

	(
	
	Display the name of the current document followed by a dash and the name of the application in the title bar of MDI parent windows
	
	27.20
	
	

	(
	
	Don't perform actions in Click event handlers for menus and controls; instead, delegate to protected virtual methods.
	
	27.21
	
	

	(
	
	Add a HelpProvider to all forms.
	
	27.22
	
	

	(
	
	Ensure that all controls on the form are in the correct TabIndex order.
	
	27.23
	
	

	(
	
	Ensure that controls on a form have a unique accelerator key that doesn’t clash with the hot key associated with one of the top-level menus.
	
	27.24
	
	

	(
	
	Set the UseMnemonic property to false for all Label controls whose value is bound to a data source or is assigned at run time.
	
	27.25
	
	

	(
	
	Consider using the Validating event to validate the contents of each control when the user moves the focus away from it.
	
	27.26
	
	

	(
	
	Validate all controls before performing the action associated with the OK or Save button.
	
	27.26
	
	

	(
	
	Set the CausesValidation property to false for all the controls that shouldn’t cause a Validating event for the control that currently has the input focus.
	
	27.27
	
	

	(
	
	Use the AppendText method instead of string concatenation to append text to the current contents of a TextBox or RichTextBox control.
	
	27.28
	
	

	(
	
	Set the AcceptsTabs and AcceptsReturns properties of a multilined TextBox control or a RichTextBox control to enable users to enter tabs and carriage returns in the control.
	
	27.29
	
	

	(
	
	Implement global error handlers for Windows Forms applications to recover from (or just ignore) unhandled exceptions.
	
	27.30
	
	

	(
	
	Use the SystemEvents object to react to screen resolution changes if necessary.
	
	27.31
	
	

	(
	
	Display the hourglass cursor while performing an operation that might last for more than a couple of seconds.
	
	27.32
	
	

	(
	
	If an operation lasts for more than 5 seconds, use a ProgressBar control to display completion status.
	
	27.32
	
	

	(
	
	Run lengthy operations on a separate thread.
	
	27.33
	
	

	(
	
	Don't use Application.DoEvents to simulate multi-threading.
	
	27.33
	
	

	(
	
	Assign a unique value to the AccessibleName property of all the TextBox, ComboBox, and other editable controls.
	
	27.34
	
	

	(
	
	Use configuration files instead of the system registry as a place for storing application-related data that doesn’t change often.
	
	27.35
	
	

	(
	
	Define the behavior of the application if the user launches it when another instance of the application is already running.
	
	27.36
	
	

	(
	
	Either mark a public property in a component class or Windows Forms control class with the Browsable(false) attribute or decorate it with the Description and Category attributes.
	
	27.36
	
	

	
	
	
	
	
	
	

	
	28. ADO.NET Programming
	
	
	
	

	(
	
	Use a standard prefix for variables holding a reference to an ADO.NET object (see Table 28-1).
	
	28.1
	
	

	(
	
	Always protect database operations from unhandled exceptions.
	
	28.2
	
	

	(
	
	Open a connection in a Try block and close it in the corresponding Finally block.
	
	28.2
	
	

	(
	
	Explicitly invoke the Dispose or Close method of all disposable ADO.NET objects, including Command and DataAdapter objects.
	
	28.2
	
	

	(
	
	Favor using Microsoft SQL Server .NET Data Provider and the Oracle .NET Data Provider instead of the more generic OLEDB and ODBC data providers.
	
	28.3
	
	

	(
	
	Use ADO.NET base classes and interfaces where possible to create provider-agnostic code.
	
	28.4
	
	

	(
	
	Store connection strings in application’s configuration file.
	
	28.5
	
	

	(
	
	Don’t store ADODB connection strings in .udl files.
	
	28.5
	
	

	(
	
	Leverage constructors in ADO.NET to write more concise code.
	
	28.6
	
	

	(
	
	Adopt Windows authentication to SQL Server security in Windows Forms applications.
	
	28.7
	
	

	(
	
	Never use the sa account when adopting SQL Server security
	
	28.7
	
	

	(
	
	Consider using a nondefault value of the SqlConnection.PacketSize property for improved performance.
	
	28.8
	
	

	(
	
	Don’t use primary keys that have a meaning for the end user.
	
	28.9a
	
	

	(
	
	Use an autoincrementing (identity) integer column as the primary key of a table if possible, selecting a large enough precision.
	
	28.9b
	
	

	(
	
	Use uniqueidentifier (GUID) columns as primary keys in disconnected architectures.
	
	28.9c
	
	

	(
	
	Avoid primary keys consisting of two or more fields.
	
	28.9d
	
	

	(
	
	Consider using asynchronous delegates when opening a connection from inside a Windows Forms application.
	
	28.10
	
	

	(
	
	Use a DataReader instead of a DataSet if possible.
	
	28.11
	
	

	(
	
	Read only the rows and columns that are actually necessary.
	
	28.12
	
	

	(
	
	Sort and group data on the server using SQL statements if an index exist in the database; otherwise perform these operations on the client.
	
	28.13
	
	

	(
	
	Use the Command.ExecuteReader method with the CommandBehavior.SingleRow argument if the result includes max one row.
	
	28.14
	
	

	(
	
	Use the Command.ExecuteScalar method when the result is a single value.
	
	28.15
	
	

	(
	
	Consider using the TOP keyword or the SET ROWCOUNT statement to limit the number of rows returned by an SQL statement.
	
	28.16
	
	

	(
	
	Account for NULL values in the WHERE clause of the SELECT statement.
	
	28.17
	
	

	(
	
	Encode special characters in arguments to LIKE operands in SELECT queries.
	
	28.18
	
	

	(
	
	Use the CommandBehavior.CloseConnection argument when creating a DataReader object returned by a method.
	
	28.19
	
	

	(
	
	Invoke the Cancel method of the Command object before closing a DataReader, if you don’t want to read any remaining rows.
	
	28.20
	
	

	(
	
	Favor commands with parameters over SQL queries built dynamically.
	
	28.21
	
	

	(
	
	Invoke the Prepare method of all the SqlCommand objects that you plan to reuse multiple times in the application lifetime.
	
	28.22
	
	

	(
	
	Consider using a stored procedure for better performance and security, to execute a batch of commands, when clients can use multiple access technologies (e.g. ADO and ADO.NET).
	
	28.23
	
	

	(
	
	Never put business logic inside a stored procedure.
	
	28.23
	
	

	(
	
	Use the usp_ prefix for user-defined SQL Server stored procedures instead of the more common sp_ prefix.
	
	28.24
	
	

	(
	
	Consider using SQL Server views or stored procedures to access database tables instead of accessing the tables directly.
	
	28.25
	
	

	(
	
	Close the DataReader object before attempting to read the return value or the output arguments of the stored procedure.
	
	28.26
	
	

	(
	
	Use CommandBehavior.SequentialAccess with the ExecuteReader method if you read one or more large binary or text columns.
	
	28.27
	
	

	(
	
	Ensure that large text and binary columns are listed at the end of the columns list in the SELECT statement.
	
	28.27
	
	

	(
	
	Process large binary and text fields in chunks if they are larger than 8 KB.
	
	28.28
	
	

	(
	
	Implement a pagination mechanism to display the result of a query in groups of 50 rows or fewer.
	
	28.29
	
	

	(
	
	Stuff multiple commands in a semicolon-delimited list when sending a query to SQL Server.
	
	28.30
	
	

	(
	
	Use the DataSet suffix for strong-typed DataSet classes.
	
	28.31
	
	

	(
	
	DataTable names match the name of the database table: avoid spaces, symbols, and underscores in these names.
	
	28.32
	
	

	(
	
	Use the ParentTable_ChildTable name convention for DataRelation objects.
	
	28.33
	
	

	(
	
	Use strong-typed DataSet objects rather than untyped ones.
	
	28.34
	
	

	(
	
	Use a DataTable instead of a DataSet object if possible.
	
	28.35
	
	

	(
	
	Explicitly set the Locale property of any DataSet or DataTable object that your code instantiates.
	
	28.36
	
	

	(
	
	Don't rely on the DataAdapter's autoconnect feature; always explicitly open and close the connection.
	
	28.37
	
	

	(
	
	Never use CommandBuilder objects.
	
	28.38
	
	

	(
	
	Set bothn the AutoIncrementSeed and the AutoIncrementStep property to -1 for columns that correspond to identity fields in Access and SQL Server.
	
	28.39
	
	

	(
	
	Avoid passing large DataSet objects to remote components.
	
	28.40
	
	

	(
	
	Open an ADO.NET or COM+ serializable transaction when reading two or more tables in a master-detail relationship.
	
	28.41
	
	

	(
	
	Leave both the Use Optimistic Concurrency and the Refresh The DataSet options selected.
	
	28.42
	
	

	(
	
	Consider adding a TimeStamp column to the database table to quickly detect when another user has updated one or more rows.
	
	28.43
	
	

	(
	
	Close a transaction as soon as possible. Neither accept user input while a transaction is open nor allow the user to decide whether a transaction should be committed or rolled back.
	
	28.44
	
	

	(
	
	Don’t rely on the default behavior of the DataAdapter object for managing update conflicts.
	
	28.45
	
	

	(
	
	Use the DataSet.GetChanges method to create a new DataSet pass this new object to the DataAdapter.Update method.
	
	28.46
	
	

	(
	
	Use the recommended sequence of update operations when working with master-detail tables.
	
	28.47
	
	

	
	
	
	
	
	
	

	
	29. Web Form applications
	
	
	
	

	(
	
	Use a prefix from Table 29-1 for Web Forms control names.
	
	29.1
	
	

	(
	
	Use a prefix from Table 29-2 for HTML control names.
	
	29.2
	
	

	(
	
	Set the pageLayout, targetSchema, and defaultClientScript properties immediately after creating the Web Forms page.
	
	29.3
	
	

	(
	
	Set the pageLayout property to the value FlowLayout, rather than using its default GridLayout value.
	
	29.4
	
	

	(
	
	Set the targetSchema property to Microsoft Internet Explorer 3.02/Navigator 3.0 for sites that should be viewable with downlevel browsers.
	
	29.5
	
	

	(
	
	Set the SmartNavigation property to true, unless you experience problems with client-side scripts or strange browser behavior.
	
	29.6
	
	

	(
	
	Set the EnableViewState property to false for all the controls that don’t need to retain their state between postbacks.
	
	29.7
	
	

	(
	
	If no control on the Web page preserves its state between postbacks, set the page’s EnableViewState property to false.
	
	29.7
	
	

	(
	
	The <Title> tag in a Web Forms page should reflect the page contents as closely as possible.
	
	29.8
	
	

	(
	
	Use the Crawler property of the Request.Browser object to detect whether the user agent is a Web crawler and to configure behavior accordingly.
	
	29.9
	
	

	(
	
	Ensure that you disable debug mode when deploying the ASP.NET application or when profiling or stressing it.
	
	29.10
	
	

	(
	
	Don’t use the CacheControl, Expires, ExpiresAbsolute, and Buffer properties of the Response object.
	
	29.11
	
	

	(
	
	When displaying a list or template control carefully consider the implications of relying on the ViewState mechanism rather than reloading data in the control at each postback.
	
	29.12
	
	

	(
	
	If a page contains controls whose AutoPostBack property is set to true, ensure that users can also cause a postback by means of a Button, LinkButton, or ImageButton control.
	
	29.13
	
	

	(
	
	Use the image- and hyperlink-based control that meet your requirements more closely.
	
	29.14
	
	

	(
	
	Always validate user input and all data coming from the client, including posted files, cookies, and the query string.
	
	29.15
	
	

	(
	
	Double all single quote characters in dynamically generated SQL queries.
	
	29.15b
	
	

	(
	
	Leave the ValidateRequest page attribute to true, its default value.
	
	29.15c
	
	

	(
	
	Strip characters that can’t be part of a legal input value
	
	29.15e
	
	

	(
	
	Avoid using the Response.Write method or the Label or Literal controls to display data that you haven’t carefully validated.
	
	29.15f
	
	

	(
	
	Consider using the Request.UserLanguages collection to format numbers and dates according to the user’s locale.
	
	29.16
	
	

	(
	
	Use the Server.HtmlEncode method when displaying data taken from input fields or database fields to an HTML or Web control.
	
	29.17
	
	

	(
	
	If a button control performs a potentially dangerous operation, ask the user to confirm the operation.
	
	29.18
	
	

	(
	
	Validate input data on the client by means of ASP.NET validator controls, but enforce validation on the server as well.
	
	29.19
	
	

	(
	
	If an empty string is an invalid value for a field, use a RequiredFieldValidator control to validate its value.
	
	29.20
	
	

	(
	
	When comparing two controls, use an additional validator control to ensure that the other control can be converted to the expected type.
	
	29.21
	
	

	(
	
	Don’t use Microsoft .NET Framework–specific extensions in the regular expressions used by a RegularExpressionValidator control.
	
	29.22
	
	

	(
	
	Never embed confidential data in the regular expression used by a RegularExpressionValidator control.
	
	29.22
	
	

	(
	
	Avoid using the HtmlInputFile.SaveAs method; instead, read data from the incoming stream and save it directly to the appropriate data store.
	
	29.23
	
	

	(
	
	Use the maxRequestLength attribute of the <httpRuntime> tag in Web.config to limit the size of the data that a client can upload.
	
	29.24
	
	

	(
	
	Ensure that file paths entered by the user are relative and can’t reference an arbitrary directory on the server’s hard disk.
	
	29.25
	
	

	(
	
	Define a page-level connection object, open it at the top of the Page_Load event handler, and close it at the bottom in the Page_Unload event handler.
	
	29.26
	
	

	(
	
	Use the trusted subsystem model in Internet applications and wherever it's possible: authenticate users at IIS level and map them to one of a small group of SQL Server accounts, using SQL Server authentication.
	
	29.27a
	
	

	(
	
	Prefer using the impersonation/delegation model in intranet applications, using Windows authentication for SQL Server.
	
	29.27b
	
	

	(
	
	Don't Windows authentication when IIS and SQL Server are in nontrusting domains or are separated by a firewall.
	
	29.27c
	
	

	(
	
	When using SQL Server authentication, consider using a secure connection (IPSec or SSL) between the Web application and the database.
	
	29.27d
	
	

	(
	
	When using the trusted subsystem model, create a low-privilege Windows account for the ASP.NET application and a corresponding account in SQL Server.
	
	29.27e
	
	

	(
	
	When using SQL Server authentication, don’t use the built-in sa or db_owner accounts.
	
	29.27f
	
	

	(
	
	In larger applications, don't connect directly to the database from inside the ASP.NET application: instead, put all your data access code in serviced components stored in a server library.
	
	29.27g
	
	

	(
	
	Use the Response.IsClientConnected at the end of a lengthy server operation.
	
	29.28
	
	

	(
	
	If possible, bind to a DataReader rather than a DataSet, DataTable, or DataView object.
	
	29.29a
	
	

	(
	
	Avoid the page-level DataBind method.
	
	29.29b
	
	

	(
	
	When working with template controls, keep the names of the container control and its child controls as short as possible.
	
	29.29c
	
	

	(
	
	When working with template controls, consider generating HTML code manually for the rows that only display information.
	
	29.29d
	
	

	(
	
	Define the data binding behavior at design time using the features of Microsoft Visual Studio .NET if possible.
	
	29.29e
	
	

	(
	
	In a DataGrid control, use template columns rather than data bound columns.
	
	29.29f
	
	

	(
	
	Avoid the DataBinder.Eval method.
	
	29.29g
	
	

	(
	
	Cast the Container.DataItem object to a DataRowView object when binding to a DataSet, DataTable, or DataView, or cast to a DbDataRecord object if you are binding to a DataReader.
	
	29.29h
	
	

	(
	
	When casting to a DbDataRecord object, consider retrieving values by means of a strong-typed method such as GetInt32 or GetDouble.
	
	29.29i
	
	

	(
	
	Consider writing code in the ItemDataBound event handler to extract values from the data source manually.
	
	29.29j
	
	

	(
	
	When displaying multiple database fields in a list control, use a proper SQL statement to combine multiple database fields in a single value.
	
	29.30
	
	

	(
	
	Don’t write code for the ItemCommand if the button’s CommandName property is equal to Select, Edit, Delete, Update, or Cancel.
	
	29.31
	
	

	(
	
	Use the ViewState dictionary to persist variable values between postbacks to the same page.
	
	29.32
	
	

	(
	
	Always check that a ViewState, Session, or Application value isn’t a null object reference before using it.
	
	29.32, 29.33
	
	

	(
	
	Use the in-process Session dictionary to store values that must be shared among all the pages in an application running on a single server computer.
	
	29.33
	
	

	(
	
	Use the service-based Session dictionary in applications that run on a Web garden or a Web farm.
	
	29.34
	
	

	(
	
	Use the SQL Server-based Session dictionary in applications that run on a Web garden or a Web farm and must survive to crashes.
	
	29.35
	
	

	(
	
	Use persistent cookies only for small amounts of user data that isn’t critical from a security perspective and that must be preserved between visits to the Web site or must be shared with non-ASP.NET applications.
	
	29.36
	
	

	(
	
	Don't use hidden fields as a means of storing data between page postbacks.
	
	29.37
	
	

	(
	
	Don't use the Application dictionary.
	
	29.38
	
	

	(
	
	Use global static variables to store application-wide values that should be shared among all users.
	
	29.39
	
	

	(
	
	Disable the Session dictionary in the root Web.config file if you don’t use it anywhere in your application.
	
	29.40
	
	

	(
	
	Set the Page.EnableSessionState property to false if you don’t access the Session dictionary in a given page,
	
	29.40
	
	

	(
	
	Set the Page.EnableSessionState property to ReadOnly if you read values in the Session dictionary but don’t modify them.
	
	29.40
	
	

	(
	
	Wrap ViewState and Session variables in properties with the same name; consistently access those variables only through the property; throw an exception if a proposed value isn't valid.
	
	29.41
	
	

	(
	
	Use PascalCase for cookies and for ViewState, Session, Application, and Cache item names.
	
	29.42
	
	

	(
	
	Ensure that the Page.EnableViewStateMac property is set to true.
	
	29.43
	
	

	(
	
	Assign the value returned by the Session.SessionID property to the Page.ViewStateUserKey property.
	
	29.44
	
	

	(
	
	Omit the IsolateApps modifier in the machineKey element when running on a Web garden configuration.
	
	29.45
	
	

	(
	
	Use explicit values for validationKey and encryptionKey attributes in the machineKey element if running on a Web farm.
	
	29.46
	
	

	(
	
	Use the Server.Transfer or Server.Execute method to redirect to another page in the same ASP.NET application.
	
	29.47
	
	

	(
	
	Never use true as the second argument of a Server.Execute or Response.Redirect.
	
	29.47
	
	

	(
	
	Use the query string only to pass small amounts of data that don’t include secret information to another page.
	
	29.48
	
	

	(
	
	Use the Context.Items object to pass data to a page that you invoke with a Server.Transfer or Server.Execute method.
	
	29.49
	
	

	(
	
	When passing field values to another page, wrap all the field values in public read-only properties and access those properties by means of the Context.Handler property.
	
	29.50
	
	

	(
	
	Use the Response.ApplyAppPathModifier method when passing a local URL to another Web application.
	
	29.51
	
	

	(
	
	Set the page's aspCompat attribute to true if the page uses legacy STA COM components.
	
	29.52a
	
	

	(
	
	Don’t store an instance of a legacy COM component in a Session variable.
	
	29.52b
	
	

	(
	
	Don’t instantiate legacy COM components in the page’s constructor or by means of a field initializer.
	
	29.52c
	
	

	(
	
	Favor the Response.Cache object over the @ OutputCache page directive.
	
	29.53
	
	

	(
	
	Use the ASP.NET Cache object to cache data that doesn’t become stale in a short period and can be shared among all users.
	
	29.54
	
	

	(
	
	Always define a global error handler in the Global.asax file to recover gracefully from an unhandled exception.
	
	29.55
	
	

	(
	
	Never use the Off value for the mode attribute of the customErrors element in Web.config.
	
	29.56
	
	

	(
	
	If necessary, enable tracing at the application level in the web.config.
	
	29.57
	
	

	(
	
	For intranet sites, enable ASP.NET impersonation if the application must behave differently for each connected user.
	
	29.58
	
	

	(
	
	For Internet sites, run ASP.NET under a user account that you created for this purpose and that is used only for the current application.
	
	29.58
	
	

	(
	
	Encrypt the user name and password used for the ASP.NET account as well as the connection strings used for state-based and SQL Server–based Session dictionaries.
	
	29.59
	
	

	(
	
	When using URL authorization, append a deny element to the end of the list to explicitly deny access to any user who hasn’t been authorized by a previous allow element.
	
	29.60
	
	

	(
	
	When using URL authorization, insert a deny element to prevent access by anonymous users if the application should be used only by authenticated users.
	
	29.60
	
	

	(
	
	Use custom settings when enforcing forms authentication for an ASP.NET application.
	
	29.61
	
	

	(
	
	Implement a custom forms authentication mechanism based on a database table to replace the built-in mechanism.
	
	29.62
	
	

	(
	
	If using forms authentication to protect only a physical or virtual folder (as opposed to the entire Web site), set the cookie Path property equal to the folder name.
	
	29.63
	
	

	(
	
	Enforce a robust policy for passwords entered by users.
	
	29.64
	
	

	(
	
	Use script include directives for all the script routines on the page.
	
	29.65
	
	

	(
	
	Use the location element to place critical settings in machine.config or in the application’s main Web.config,
	
	29.66
	
	optional

	(
	
	Use ACLs to prevent unauthorized users from reading or editing configuration files.
	
	29.66
	
	

	(
	
	Remove any ASP.NET HTTP module that you don’t use in the current application.
	
	
	
	

	
	
	
	
	
	
	

	
	30. Web services
	
	
	
	

	(
	
	The name of the .asmx file should be equal or similar to the Web service class that it hosts.
	
	30.1
	
	

	(
	
	Use a WebService attribute to decorate a Web service class with description and namespace.
	
	30.2
	
	

	(
	
	Provide a meaningful description in the WebMethod attribute.
	
	30.3
	
	

	(
	
	Use the SoapInclude attribute to force the inclusion of one or more types in the WSDL contract, if necessary.
	
	30.4
	
	

	(
	
	If possible, assign a suitable value to the CacheDuration option of the WebMethod attribute.
	
	30.5
	
	

	(
	
	Use a meaningful namespace for the proxy class.
	
	30.6
	
	

	(
	
	Call a Web service synchronously only from server-side applications and programs with no user interface
	
	30.7
	
	

	(
	
	Call a Web service asynchronously from inside Windows Forms clients.
	
	30.8
	
	

	(
	
	Provide support for Windows Forms clients that run from behind a proxy server; read proxy settings from configuration file.
	
	30.9
	
	

	(
	
	Set the CookieContainer property of proxy classes. (Mandatory when working with Web services that access the Session dictionary.)
	
	30.10
	
	

	(
	
	Use SOAP headers for “out-of-band” information that isn’t directly related to the called method.
	
	30.11
	
	

	(
	
	Implement one-way Web service calls for lengthy methods if possible.
	
	30.12
	
	

	(
	
	Use the most recent version of Web Service Enhancements (WSE) to implement advanced functions.
	
	30.13
	
	

	
	
	
	
	
	
	

	
	31. Serviced components
	
	
	
	

	(
	
	Carefully consider whether using transactional serviced components as opposed to using standard ADO.NET transactions.
	
	31.1
	
	

	(
	
	Don't use public static members in serviced components.
	
	31.2
	
	

	(
	
	Use server COM+ applications to run a component remotely, to impersonate an identity other than the client's, if components must be restarted separately.
	
	31.3
	
	

	(
	
	Assign a value to the ApplicationName, ApplicationID, ApplicationActivation, and Description attributes for assemblies that contain serviced components.
	
	31.4
	
	

	(
	
	Apply the ClassInterface attribute to all serviced components to make them expose a dual interface if you don’t need to apply role-based security (RBS) at the method level.
	
	31.5
	
	

	(
	
	Mark serviced components with the JustInTimeActivation attribute.
	
	31.6
	
	

	(
	
	Control the outcome of a transaction by applying the AutoComplete attribute.
	
	31.7
	
	

	(
	
	Explicitly throw exceptions if the transaction should be aborted and avoid catching exceptions when calling other .NET components.
	
	31.7
	
	

	(
	
	Use the default Serializable value for the Transaction attribute.
	
	31.8
	
	

	(
	
	Consider using the TransactionIsolationLevel.Any value as the isolation level for nonroot components.
	
	31.9
	
	

	(
	
	If a type exposes methods that require different isolation levels, consider creating a facade component that uses two (or more) types marked with different Transaction attributes.
	
	31.10
	
	

	(
	
	Override the CanBePooled method to ensure that the object is returned to the pool as soon as it has completed its job.
	
	31.11
	
	

	(
	
	Add an assembly-level ApplicationAccessControl attribute to enable COM+ role-based security and to enforce checks at the process and component level.
	
	31.12
	
	

	(
	
	In server applications, set the authentication level to Privacy, unless it is safe to use less severe settings.
	
	31.13
	
	

	(
	
	In server applications, set the impersonation level to Identify, unless you need to enable impersonation or delegation.
	
	31.14
	
	

	(
	
	Add a class-level ComponentAccessControl attribute to enable security checks for that component.
	
	31.15
	
	

	(
	
	Add one or more assembly-level SecurityRole attributes that define all the user roles recognized by the application.
	
	31.16
	
	

	(
	
	Include a SecurityRole attribute that adds the Everyone user to the Marshaler role if you plan to enable method-level security.
	
	31.16
	
	

	(
	
	When enabling role-based security at the method level, define the methods to be secured in a separate interface.
	
	31.17
	
	

	(
	
	Use the SecurityCallContext object to perform programmatic security and always explicitly test that the IsSecurityEnabled property is true.
	
	31.18
	
	

	(
	
	Don’t use the ContextUtil class to implement programmatic security.
	
	31.18
	
	

	(
	
	Run a server COM+ component under the identity of a least-privileged specific account.
	
	31.19
	
	

	(
	
	Call the Dispose method of non-JIT-activated components when you have done with them. Don't call the ServicedComponent.DisposeObject method.
	
	31.20
	
	

	(
	
	Never mark a public method of a serviced component with a WebMethod attribute.
	
	31.21
	
	

	
	
	
	
	
	
	

	
	32. Remoting
	
	
	
	

	(
	
	Avoid static members in MBR remotable types.
	
	32.1b
	
	

	(
	
	Avoid fields and properties and define stateless MBR objects, if possible, so that you can expose them as SAOs.
	
	32.1c
	
	

	(
	
	Favor chunky interfaces over chatty interfaces in MBRs if you can’t define stateless objects.
	
	32.1d
	
	

	(
	
	Use thread synchronization to protect resources from multiple requests in Singleton remote objects.
	
	32.1e
	
	

	(
	
	Define serializable classes for MBV objects that must be passed as arguments or returned from remote methods.
	
	32.1f
	
	

	(
	
	Mark MBV objects with the Serializable attribute but don’t implement the ISerializable interface unless it’s strictly necessary.
	
	32.1g
	
	

	(
	
	Host remotable components in IIS for better security, scalability, fault tolerance.
	
	32.2a,b
	
	

	(
	
	Host remotable components in a Windows service when use .NET remoting as a communication medium among different applications running on the same computer or running on different computers in a trusted environment.
	
	32.2c,d
	
	

	(
	
	When not using IIS as a host for remotable objects, specify a port number equal to or higher than 48152.
	
	32.3
	
	

	(
	
	Use only URIs that have either the .rem or .soap extension.
	
	32.4
	
	

	(
	
	Favor SAOs over CAOs for better scalability.
	
	32.5a
	
	

	(
	
	Use SingleCall SAOs when you don’t need to retain state between calls.
	
	32.5b
	
	

	(
	
	Use SingleCall SAOs when you don’t need to retain state between calls.
	
	32.5c
	
	

	(
	
	Use CAOs only when the object must preserve the state between calls from a given client and when clients need to control the object’s lifetime.
	
	32.5d
	
	

	(
	
	Favor registration of channels and remote objects by means of configuration files to programmatic registration.
	
	32.6
	
	

	(
	
	Consider loading a configuration file in the Main method of all your applications, even if the application doesn’t use remoting and the configuration is empty.
	
	32.7
	
	

	(
	
	When you aren’t using IIS as a host, use the TCP channel and a binary formatter for the best performance.
	
	32.8b
	
	

	(
	
	Use the TCP channel only when you are implementing cross-process communication on the same machine and when there is no firewall between the client and the server.
	
	32.8c
	
	

	(
	
	Always use a binary formatter for the best performance.
	
	32.8d
	
	

	(
	
	When using .NET remoting for cross-AppDomain calls or cross-process calls on the same computer, reject all connections that don’t originate from the local computer.
	
	32.9
	
	

	(
	
	Omit the typeFilterLevel attribute if you are marshaling only primitive types and types associated with the most basic remoting functionality.
	
	32.10
	
	

	(
	
	Prevent remote clients from seeing detailed error information by using appropriate settings for the customErrors tag.
	
	32.11
	
	

	(
	
	When hosting an object in IIS, disable the Enable HTTP Keep-Alives option.
	
	32.12
	
	

	(
	
	Provide a null object reference as a lease for Singleton SAOs so that the object is never released.
	
	32.13
	
	

	(
	
	Consider applying the OneWay attribute to a remote method that doesn’t return a value and doesn’t take a by-reference argument.
	
	32.14
	
	

	(
	
	Avoid using the Soapsuds tool.
	
	32.15
	
	

	(
	
	When working with SAOs, use assemblies containing only interface definitions and deploy these metadata-only assemblies on both the server and the client computers.
	
	32.16
	
	

	(
	
	When working with SAOs, use assemblies containing only base class definitions and deploy these metadata-only assemblies on both the server and the client computers.
	
	32.16
	
	alternate

	(
	
	When working with CAOs, use an SAO exposing factory methods that return an instance of the required CAO and invoke these factory methods by means of shared interfaces.
	
	32.17
	
	

	(
	
	When using IIS to expose remote objects to clients running in the same domain (or a trusted domain), secure the IIS virtual directory by means of Integrated Windows authentication.
	
	32.18
	
	

	(
	
	When using IIS to expose remote objects to clients that aren’t running in the same domain or a trusted domain, secure the IIS virtual directory by means of Basic authentication.
	
	32.19
	
	

	(
	
	Take into account the problems that might arise when exchanging date/time information when the host and the client applications reside in different time zones.
	
	32.20
	
	

	
	
	
	
	
	
	

	
	33. Security
	
	
	
	

	(
	
	Mark assemblies with permission attributes specifying suitable RequestMinimum, RequestOptional, and RequestRefuse actions.
	
	33.1
	
	

	(
	
	Demand all the permissions that the application might require during its lifetime and disable all the user interface elements corresponding to actions that aren’t allowed.
	
	33.2
	
	

	(
	
	Favor declarative demands over imperative Demand, Deny, and PermitOnly security actions.
	
	33.3
	
	

	(
	
	Apply the APTC attribute only to strong-named assemblies that are meant to be called from partially trusted assemblies.
	
	33.4a
	
	

	(
	
	Methods in assemblies marked with the APTC attribute should call only methods in other APTC assemblies.
	
	33.4b
	
	

	(
	
	Methods in assemblies marked with the APTC attribute should always demand one or more permissions from callers.
	
	33.4c
	
	

	(
	
	Types in APTC assemblies should derive only from types defined in other APTC assemblies.
	
	33.4d
	
	

	(
	
	Assert a permission before performing multiple operations on a resource that is subject to CAS.
	
	33.5a
	
	

	(
	
	Precede any Assert method with a Demand method on the same permission object.
	
	33.5b
	
	

	(
	
	Keep methods as short as possible so that the permission is asserted for a limited time only.
	
	33.5c
	
	

	(
	
	Use the CodeAccessPermission.RevertAssert static method if you need to assert a different permission in the same method.
	
	33.5d
	
	

	(
	
	Avoid using Deny and PermitOnly security actions.
	
	33.6
	
	

	(
	
	Ensure that event handlers don’t contain dangerous code and can’t be exploited by malicious clients.
	
	33.7
	
	

	(
	
	Use private or protected scope for event handlers
	
	33.7
	
	

	(
	
	Add a Catch clause that traps all exceptions if the code in the Try or try block modifies any property of the current thread in a way that might be exploited by malicious code.
	
	33.8
	
	

	(
	
	Favor a full Demand security action over a LinkDemand action.
	
	33.9a
	
	

	(
	
	Use the LinkDemand action only if your benchmarks prove that it speeds up execution significantly.
	
	33.9b
	
	

	(
	
	Use the LinkDemand action at the class level if you want to protect all the properties and methods of a class.
	
	33.9c
	
	

	(
	
	Don’t expose public fields in types that you protect with a LinkDemand action.
	
	33.9d
	
	

	(
	
	Don’t access members protected with a LinkDemand action from members that aren’t protected with a similar LinkDemand action.
	
	33.9e
	
	

	(
	
	Don’t rely on the LinkDemand action to protect virtual properties and methods.
	
	33.9f
	
	

	(
	
	If you override a method marked with a LinkDemand security action, the method in the derived type should be marked with the same LinkDemand security action.
	
	33.9g
	
	

	(
	
	Always use a full Demand imperative or declarative security check for methods that use types or methods protected only by a LinkDemand action.
	
	33.9h
	
	

	(
	
	Don’t use a type-level LinkDemand action in a value type or a LinkDemand action in the constructor of a value type.
	
	33.9i
	
	

	(
	
	Always protect interfaces with LinkDemand actions.
	
	33.9j
	
	

	(
	
	Use a type-level InheritanceDemand action for any nonsealed type that is marked with a LinkDemand action if the type has one or more virtual methods.
	
	33.10
	
	

	(
	
	Avoid using the SuppressUnmanagedCodeSecurity attribute at the type level in public or protected types.
	
	33.11a
	
	

	(
	
	Avoid applying the SuppressUnmanagedCodeSecurity attribute to public and protected members.
	
	33.11b
	
	

	(
	
	Methods marked with the SuppressUnmanagedCodeSecurity attribute should always demand more specific permissions to prevent untrusted callers from performing dangerous actions.
	
	33.11c
	
	

	(
	
	Apply the SuppressUnmanagedCodeSecurity attribute to all methods marked with the DllImport attribute, but use a Demand security action to check required permissions.
	
	33.11d
	
	

	(
	
	Check arguments passed to unmanaged code.
	
	33.11e
	
	

	(
	
	Clearly mark methods that call unmanaged code and that aren’t completely safe with the Unsafe prefix.
	
	33.11f
	
	

	(
	
	If you apply the same declarative security action (other than LinkDemand) to both a type and one of its methods, the permission checked at the method level should be more restrictive than the permission checked at the type level.
	
	33.12
	
	

	(
	
	Don’t protect a value type, or its nondefault constructor, with an imperative Demand or LinkDemand security action.
	
	33.13
	
	

	(
	
	Use private scope for the constructor implied by the ISerializable interface, or protected scope if the class isn’t sealed.
	
	33.14a
	
	

	(
	
	Protect the constructor implied by the ISerializable interface with the same security actions used to protect other constructors.
	
	33.14b
	
	

	(
	
	Protect the GetObjectData method by demanding SerializationFormatter permissions.
	
	33.14c
	
	

	(
	
	Use the StrongNameIdentityPermission attribute to ensure that a type and its members can be called only by another specific assembly or by all the assemblies of your company.
	
	33.15
	
	

	(
	
	Use the StackTrace object to walk the call stack and check the identity of the immediate caller (or all the callers in the stack) if you want to prevent your DLLs from being used by unauthorized clients.
	
	33.16
	
	

	(
	
	Use the trust element in web.config to grant an ASP.NET application the level of trust that it strictly needs.
	
	33.17
	
	

	(
	
	Don’t change the contents of .config files stored in C:\Windows\Microsoft.NET\Framework\v1.1.4322\Config.
	
	33.17
	
	

	(
	
	Invoke the SetPrincipalPolicy method on the current AppDomain for all applications that enforce role-based security policy.
	
	33.18
	
	

	(
	
	Use the PrincipalPermission type to enforce role-based security on specific methods or all the members in a type.
	
	33.19
	
	

	(
	
	Use ACLs to protect configuration and data files.
	
	33.20
	
	

	(
	
	Consider protecting data files with encryption.
	
	33.21
	
	

	(
	
	Consider hashing files, database fields, and other sources that contain data that shouldn’t be tampered with.
	
	33.22
	
	

	(
	
	Encrypt or hash data files and database fields that contain the deserialized state of an object.
	
	33.23
	
	

	(
	
	Don’t store user passwords as clear text. Instead, compute and store their hash values or encrypt them.
	
	33.24
	
	

	(
	
	Use the RNGCryptoServiceProvider class whenever you need to generate truly random data.
	
	33.25
	
	

	(
	
	Use the PasswordDeriveBytes class when you need to generate random data based on a user password.
	
	33.26
	
	

	(
	
	Consider using an obfuscator to prevent reverse engineering of your application.
	
	33.27
	
	

	
	
	
	
	
	
	

