
280

Chapter 23

Memory Usage

The garbage collector is one of the most sophisticated pieces of the Microsoft .NET Frame-
work architecture. Each time an application runs short of memory, the .NET runtime fires a
garbage collection (GC) and examines all the objects that are in use, either because the appli-
cation has a reference to them (these are known as roots) or because the object is referenced by
another object in use. All the objects in the managed heap that aren’t reachable are candidates
for the GC. If the object has no finalizer, the object is immediately reclaimed and the heap is
compacted; if the object has a Finalize method, the .NET runtime runs the method but
doesn’t reclaim the object until the next GC. (Actually, it might take more than one GC to col-
lect an object with a finalizer because the object has been promoted to Generation 1 or Gen-
eration 2 and won’t be reclaimed by a Generation-0 GC.) When all unreachable objects have
been reclaimed, the managed heap can be compacted and the garbage collector can update all
object references to point to the new position of the object in the heap.

This very concise description of what the garbage collector does explains why a GC is a rela-
tively time-consuming operation. All .NET developers worth their salt should feel the respon-
sibility of reducing the number of GCs that occur during the application’s lifetime. We have
illustrated several techniques that guarantee optimal usage of memory elsewhere in the book;
in this chapter we focus on how you can help the garbage collector perform its job as effi-
ciently as possible.

The simplest way to check whether your application uses memory efficiently is to have a look
at a few counters of the .NET CLR Memory performance object:

■ # Bytes in all Heaps (the sum of the four heaps used by the application, that is, Genera-
tion-0, Generation-1, Generation-2, and Large Object heaps)

■ Gen 0 heap size, Gen 1 heap size, Gen 2 heap size, Large Object Heap size (the size of
the four heaps used by the garbage collector)

■ Gen 0 Collections, Gen 1 Collections, Gen 2 Collections (the number of GCs fired by
the runtime)

■ % Time in GC (the percentage of CPU time spent performing GCs)

Note One or more code examples in this chapter assume that the following namespaces
have been imported by means of Imports (Visual Basic) or using (C#) statements:

System.IO

System.Runtime.InteropServices

C23621721.fm Page 280 Wednesday, January 12, 2005 10:52 PM

Chapter 23: Memory Usage 281

23.1 Early creation of long-lasting objects

As a rule of thumb, objects that are meant to live for the entire duration of the application life-
time should be created earlier, if possible immediately after starting the application, and
shouldn’t be reallocated during the application lifetime.

Why: This simple technique has a twofold benefit. First, after a couple of garbage collections
these objects will be promoted to Generation 2 and the garbage collector will ignore them dur-
ing all Generation-0 and Generation-1 collections. (Having fewer objects to scan speeds up the
garbage collection step.) Second, these objects will be allocated near the beginning of the
managed heap and the .NET runtime won’t need to move them in memory when the heap is
compacted.

More details: For the aforementioned reason, fields in long-lasting objects shouldn’t point to
short-term objects; otherwise, these short-term objects will quickly be promoted to Genera-
tion 2 and, even if your code later sets them to Nothing (Visual Basic) or null (C#), they will
take memory until the .NET runtime fires a Generation-2 collection.

23.2 Boxing

Ensure that you don’t box value types without a good reason. You have a boxing operation
when you assign a value type (for example, a number, a DataTime value, a structure) to an
Object variable, pass it as an argument to a method that takes Object parameters, or assign it
to an interface variable.

Why: Boxing consumes memory in the managed heap and indirectly causes the garbage col-
lection process to run more frequently, thus slowing down the application.

See also: Read 8.8, 9.5, 9.6, and 14.19 for techniques that allow you to reduce the number of
boxing operations in your applications.

23.3 Clearing object references

Don’t explicitly set an object reference to null when you don’t need it any longer inside a
method.

Why: When optimizations are enabled, both Visual Basic and C# compilers can detect when
an object variable isn’t used later in the method and the garbage collector can reclaim the
memory without the developer’s assistance.

' [Visual Basic]

Sub PerformTask()

Dim p As New Person

' Use the object.

...

' No need to explicitly set the variable to Nothing

End Sub

C23621721.fm Page 281 Wednesday, January 12, 2005 10:52 PM

282 Part I: Coding Guidelines and Best Practices

// [C#]

void PerformTask()

{

Person p = new Person();

// Use the object.

...

// No need to explicitly set the variable to null

}

Exception: See rule 23.4 for an exception to this rule.

23.4 Clear object references explicitly in loops

Explicitly set an object reference to null if you are inside a loop and want the .NET runtime to
collect the object before the loop ends.

Why: When compiling a loop, the Visual Basic and C# compilers can’t automatically detect
whether the variable is going to be used during subsequent iterations of the loop, and there-
fore the garbage collector can’t automatically reclaim the memory used by the object. By clear-
ing the object variable explicitly, you can help the garbage collector understand that the object
can be reclaimed.

' [Visual Basic]

Sub PerformTask()

Dim p As New Person

' Use the object inside the loop.

For i As Integer = 1 To 100

If i <= 50 Then

' Use the object only in the first 50 iterations.

Console.WriteLine(p.CompleteName)

' Explicitly set the variable to Nothing after its last use.

If i = 50 Then p = Nothing

Else

' Do something else here, but don't use the p variable.

...

End If

Next

End Sub

// [C#]

void PerformTask()

{

Person p = new Person();

// Use the object inside the loop.

for (int i=1; i <= 100; i++)

{

if (i <= 50)

{

// Use the object only in the first 50 iterations.

Console.WriteLine(p.CompleteName);

C23621721.fm Page 282 Wednesday, January 12, 2005 10:52 PM

Chapter 23: Memory Usage 283

// Explicitly set the variable to null after its last use.

if (i == 50)

p = null;

}

else

{

// Do something else here, but don't use the p variable.

...

}

}

}

23.5 Keeping objects alive

Because the .NET runtime can collect objects even if they haven’t been set explicitly to null
(see rule 23.3), you must use the GC.KeepAlive method to keep an object alive if the object is
supposed to continue to run until the current method completes.

More details: You might need to adopt this technique if the object uses a timer to perform
background operations or if the object wraps an unmanaged resource that shouldn’t be
released until the method completes. You should notice, however, that in both these cases the
object should implement the IDisposable interface and it should be used inside a using block
(see rule 16.4) or a Try...Finally block (see rule 16.5). For this reason, in practice you rarely
need to keep an object alive by means of the GC.KeepAlive method.

' [Visual Basic]

Sub PerformTask()

Dim p As New Person

' Use the object.

...

' Keep the object alive until the end of the method.

GC.KeepAlive(p)

End Sub

// [C#]

void PerformTask()

{

Person p = new Person();

// Use the object.

...

// Keep the object alive until the end of the method.

GC.KeepAlive(p);

}

23.6 Explicit garbage collections in server applications

Never explicitly invoke the GC.Collect method in server-side applications except for testing
and debugging purposes. (Server-side applications include Web Forms, Web Services, Ser-
viced Components, and Windows Services projects.)

C23621721.fm Page 283 Wednesday, January 12, 2005 10:52 PM

284 Part I: Coding Guidelines and Best Practices

23.7 Explicit garbage collections in client applications

Use the GC.Collect method judiciously in client-side applications and only at the conclusion
of a time-consuming operation such as file load or save. (Client-side applications include Con-
sole and Windows Forms projects.)

Never use the GC.Collect method in a class library or a control library unless you clearly doc-
ument under which conditions a garbage collection is fired. In other words, induced garbage
collections should always be under the control of the main application.

23.8 Waiting for finalizers after explicit garbage collections

Always use the GC.WaitForPendingFinalizers method after invoking the GC.Collect method.

Why: Finalizer methods run in a separate thread; by calling the GC.WaitForPendingFinalizers
method, you ensure that all finalizers have completed and your objects are destroyed before
continuing.

' [Visual Basic]

' The correct way to force a garbage collection

GC.Collect()

GC.WaitForPendingFinalizers()

// [C#]

// The correct way to force a garbage collection

GC.Collect();

GC.WaitForPendingFinalizers();

23.9 Large object heap fragmentation

Don’t frequently create and destroy large objects, that is, objects that occupy more than 85,000
bytes. Consider splitting large objects into two or more smaller (regular) objects.

Why: Large objects are stored in a separate managed heap that is never compacted (because
moving such large memory blocks would be too time-consuming). If you frequently allocate
and free large objects, this separate heap can become fragmented, so even though you have
enough free memory in the heap overall, you might run out of memory if there isn’t a block
large enough for the object you’re trying to create.

More details: The majority of large objects are arrays. In some cases you can avoid the cre-
ation of a large object by using alternate but equivalent objects, such as an ArrayList or a BitAr-
ray. Likewise, you can often replace a large two-dimensional array with a jagged array whose
constituent subarrays are smaller than 85,000 bytes.

You can control how the .NET runtime uses the large object heap by monitoring the Large
Object Heap size counter of the .NET CLR Memory performance object.

C23621721.fm Page 284 Wednesday, January 12, 2005 10:52 PM

Chapter 23: Memory Usage 285

23.10 Compound finalizable objects

If you have a finalizable object that occupies a lot of memory, consider splitting the definition
of the object into two separate types: one type that contains the unmanaged resource and the
Finalize method, and another type that contains other variables.

Why: The garbage collector requires at least two collections to reclaim entirely the memory of
an object that overrides the Finalize method. (Often, more collections are required because
after the first collection the object is promoted to Generation 1.) By splitting the type into two
classes, you enable the garbage collector to reclaim the memory of the nonfinalizable portion
of the type during the first collection.

Example: The following code shows a naive implementation of a class that opens the system
Clipboard and implements the Dispose-Finalize pattern to ensure that the Clipboard is closed
when the object is disposed or when the garbage collector finalizes the object.

' [Visual Basic]

Public Class SimpleObject

Implements IDisposable

' Windows API declarations

Private Declare Function OpenClipboard Lib "User32" (ByVal hWnd As Integer) As Integer

Private Declare Function CloseClipboard Lib "User32" () As Integer

' This array takes a lot of memory.

Dim arr() As Integer

Sub New(ByVal hWnd As Integer, ByVal elements As Integer)

ReDim arr(elements - 1)

OpenClipboard(hWnd)

End Sub

' Close the Clipboard when the object is disposed.

Public Sub Dispose() Implements System.IDisposable.Dispose

CloseClipboard()

GC.SuppressFinalize(Me)

End Sub

' Close the Clipboard when the object is finalized.

Protected Overrides Sub Finalize()

Dispose()

End Sub

End Class

// [C#]

public class SimpleObject : IDisposable

{

// Windows API declarations

[DllImport("User32")]

private static extern int OpenClipboard (int hWnd);

[DllImport("User32")]

private static extern int CloseClipboard ();

// This array takes a lot of memory.

C23621721.fm Page 285 Wednesday, January 12, 2005 10:52 PM

286 Part I: Coding Guidelines and Best Practices

int[] arr;

public SimpleObject(int hWnd, int elements)

{

arr = new int[elements];

OpenClipboard(hWnd);

}

// Close the Clipboard when the object is disposed.

public void Dispose()

{

CloseClipboard();

GC.SuppressFinalize(this);

}

// Close the Clipboard when the object is finalized.

~SimpleObject()

{

Dispose();

}

}

In the following improved version, we have split the previous type into two disposable classes,
with only one of them containing the Finalize method. This new version can run remarkably
faster than the previous one if many objects are created and destroyed frequently.

' [Visual Basic]

Public Class CompoundObject

Implements IDisposable

' This array takes a lot of memory.

Dim arr() As Integer

' An instance of the inner (finalizable) object

Dim clipWrapper As ClipboardWrapper

Sub New(ByVal hWnd As Integer, ByVal elements As Integer)

ReDim arr(elements - 1)

clipWrapper = New ClipboardWrapper(hWnd)

End Sub

' Dispose of the inner object.

Public Sub Dispose() Implements System.IDisposable.Dispose

clipWrapper.Dispose()

End Sub

' The inner type that wraps the Finalize method

Private Class ClipboardWrapper

Implements IDisposable

' Windows API declarations

Private Declare Function OpenClipboard Lib "User32" (ByVal hWnd As Integer) _

As Integer

Private Declare Function CloseClipboard Lib "User32" () As Integer

Sub New(ByVal hWnd As Integer)

OpenClipboard(hWnd)

End Sub

C23621721.fm Page 286 Wednesday, January 12, 2005 10:52 PM

Chapter 23: Memory Usage 287

Public Sub Dispose() Implements System.IDisposable.Dispose

CloseClipboard()

GC.SuppressFinalize(Me)

End Sub

Protected Overrides Sub Finalize()

Dispose()

End Sub

End Class

End Class

// [C#]

public class CompoundObject : IDisposable

{

// This array takes a lot of memory.

int[] arr = null;

// An instance of the inner (finalizable) object

ClipboardWrapper clipWrapper = null;

public CompoundObject(int hWnd, int elements)

{

arr = new int[elements];

clipWrapper = new ClipboardWrapper(hWnd);

}

// Close the Clipboard when the object is disposed.

public void Dispose()

{

clipWrapper.Dispose();

}

// The inner type that wraps the Finalize method.

private class ClipboardWrapper : IDisposable

{

// Windows API declarations

[DllImport("User32")]

private static extern int OpenClipboard (int hWnd);

[DllImport("User32")]

private static extern int CloseClipboard ();

public ClipboardWrapper(int hWnd)

{

OpenClipboard(hWnd);

}

public void Dispose()

{

CloseClipboard();

GC.SuppressFinalize(this);

}

~ClipboardWrapper()

{

Dispose();

}

}

}

C23621721.fm Page 287 Wednesday, January 12, 2005 10:52 PM

288 Part I: Coding Guidelines and Best Practices

23.11 WeakReference objects

Always wrap WeakReference objects in a custom type so other developers can use them safely
and in a robust way.

More details: Weak references enable you to mantain a reference to another object (typically, an
object that consumes a lot of memory) but don’t prevent that object from being reclaimed when
a garbage collection occurs. Weak references are therefore very useful for creating a cache of
large objects: the object stays in memory only until there is a need to reclaim them. Wrapping
these weak references in a custom type enables clients to use them in a more robust way.

Example: The following CachedTextFile class wraps a WeakReference object and enables cli-
ents to read the contents of a text file (which is supposed to be immutable during the applica-
tion’s lifetime) without having to reload it from the file each time the application uses it.

' [Visual Basic]

Public Class CachedTextFile

' The name of the file cached

Public ReadOnly Filename As String

' A weak reference to the string that contains the text

Dim wrText As WeakReference

' The constructor takes the name of the file to read.

Sub New(ByVal fileName As String)

Me.Filename = fileName

End Sub

' Read the contents of the file.

Private Function ReadFile() As String

Dim sr As New StreamReader(Me.Filename)

Dim text As String = sr.ReadToEnd()

sr.Close()

' Create a weak reference to the return value.

wrText = New WeakReference(text)

Return text

End Function

' Return the textual content of the file.

Public Function GetText() As String

Dim text As Object

' Retrieve the target of the weak reference.

If Not (wrText Is Nothing) Then text = wrText.Target

If Not (text Is Nothing) Then

' If non-null, the data is still in the cache.

Return text.ToString()

Else

' Otherwise, read it and put it in the cache again.

Return ReadFile()

End If

End Function

End Class

C23621721.fm Page 288 Wednesday, January 12, 2005 10:52 PM

Chapter 23: Memory Usage 289

// [C#]

public class CachedTextFile

{

// The name of the file cached

public readonly string Filename;

// A weak reference to the string that contains the text

WeakReference wrText;

// The constructor takes the name of the file to read.

public CachedTextFile (string fileName)

{

this.Filename = fileName;

}

// Read the contents of the file.

private string ReadFile()

{

StreamReader sr = new StreamReader(Me.Filename);

string text = sr.ReadToEnd();

sr.Close();

// Create a weak reference to the return value.

WeakReference wrText = new WeakReference(text);

return text;

}

// Return the textual content of the file.

public string GetText()

{

object text = null;

// Retrieve the target of the weak reference.

if (wrText != null)

text = wrText.Target;

if (text != null)

{

// If non-null, the data is still in the cache.

return text.ToString();

}

else

{

// Otherwise, read it and put it in the cache again.

return ReadFile();

}

}

}

Here’s how you can use this class.

' [Visual Basic]

' Read and cache the contents of the "c:\alargefile.txt" file.

Dim cf As New CachedTextFile("c:\alargefile.txt")

Console.WriteLine(cf.GetText())

...

' Uncomment next line to force a garbage collection.

' GC.Collect(): GC.WaitForPendingFinalizers()

...

C23621721.fm Page 289 Wednesday, January 12, 2005 10:52 PM

290 Part I: Coding Guidelines and Best Practices

' Read the contents again some time later. (No disk access

' is performed, unless a GC has occurred in the meantime.)

Console.WriteLine(cf.GetText())

// [C#]

// Read and cache the contents of the "c:\alargefile.txt" file.

CachedTextFile cf = new CachedTextFile(@"c:\alargefile.txt");

Console.WriteLine(cf.GetText());

...

// Uncomment next line to force a garbage collection.

// GC.Collect(); GC.WaitForPendingFinalizers();

...

// Read the contents again some time later. (No disk access

// is performed, unless a GC has occurred in the meantime.)

Console.WriteLine(cf.GetText());

By examining the CachedTextFile class, you can easily prove that in most cases the file con-
tents can be retrieved through the weak reference and that the disk isn’t accessed again. By
uncommenting the statement in the middle of the previous code snippet, you force a garbage
collection, in which case the internal WeakReference object won’t keep the String object alive
and the code in the class will read the file again. The key point in this technique is that the cli-
ent code doesn’t know whether the cache object is used or not: the client just uses the
CachedTextFile object as a “black box” that deals with large text files in an optimized way.

Remember that you create a weak reference by passing your object (a string, in this example)
to the constructor of a System.WeakReference object. However, if the object is also referenced
by a regular, nonweak reference, it survives any intervening garbage collection. In our exam-
ple, the code using the CachedTextFile class should not store the return value of the GetText
method in a string variable because that would prevent the string from being garbage col-
lected. The following code snippet illustrates the incorrect way to use the CachedTextFile
class:

' [Visual Basic]

Dim cf As New CachedTextFile("c:\alargefile.txt")

Dim text As String = cf.GetText()

// [C#]

CachedTextFile cf = new CachedTextFile(@"c:\alargefile.txt");

string text = cf.GetText();

23.12 Garbage collector settings

Carefully consider using nondefault settings for the garbage collector.

More details: The .NET Framework comes with two different garbage collectors: the worksta-
tion garbage collector and the server garbage collector. These garbage collectors are imple-
mented in two different DLLs: the workstation garbage collector (in mscorwks.dll) is used on
single-processor systems, whereas the server garbage collector (in mscorsvr.dll) is used on
multiprocessor systems.

C23621721.fm Page 290 Wednesday, January 12, 2005 10:52 PM

Chapter 23: Memory Usage 291

The server garbage collector pauses the application during GCs and uses one thread and one
managed heap for each CPU; these settings guarantee the best overall throughput, even if an
individual client might be slowed down if a GC occurs during a method call. The workstation
garbage collector minimizes pauses by running the garbage collector concurrently with the
application’s worker threads.

On a single-CPU computer, both the server and the workstation garbage collectors behave in
the same way and perform collections concurrently. For particular applications, however, you
might slightly improve the overall performance by suppressing concurrency at the expense of
longer delays in user interface operations. You can do this by using the <gcConcurrent> ele-
ment in machine.config or the application’s config file.

<configuration>

<runtime>

<gcConcurrent enabled="false" />

</runtime>

</configuration>

You can also change the garbage collector behavior at the machine level by means of the
Microsoft .NET Framework version 1.1 Configuration utility, which you can run from the
Windows Administrative Tools menu.

By default, noninteractive .NET applications (such as a Windows service or an application
that uses remoting) running on a multiprocessor system use the workstation GC and might
perform poorly. You can force such applications to use the server GC by adding a <gcServer>
element in the configuration file:

<configuration>

<runtime>

<gcServer enabled="true" />

</runtime>

</configuration>

See also: For more information about this issue, read the MSDN Knowledge Base article at
http://support.microsoft.com/default.aspx?scid=kb;en-us;840523. To configure an ASP.NET
application to use the workstation GC, read http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dnpag/html/scalenetchapt06.asp.

C23621721.fm Page 291 Wednesday, January 12, 2005 10:52 PM

C23621721.fm Page 292 Wednesday, January 12, 2005 10:52 PM

