
474

Chapter 31

Serviced Components

Serviced components are Microsoft .NET Framework objects that run under Component Ser-
vices and can leverage the full range of COM+ services, including just-in-time activation (JITA),
automatic transactions, synchronization, object pooling, role-based security (RBS), and pro-
grammatic security. You can run a serviced component as a library component (in the client’s
process) or a server component (in a different process, possibly running on a different com-
puter), even though a few COM+ services are available only in server libraries.

If you aren’t familiar with serviced components and their benefits, you can read the whole
story at http://msdn.microsoft.com/library/en-us/cpguide/html/cpconwritingservicedcompo-
nents.asp. If you have already worked with serviced components, we’re sure you’ll find some
interesting tips in this chapter.

Note One or more code examples in this chapter assume that the following namespaces
have been imported by means of Imports (Visual Basic) or using (C#) statements:

System.Data.SqlClient

System.EnterpriseServices

31.1 COM+ transactions vs. ADO.NET transactions

Carefully consider the pros and cons of using transactional serviced components to imple-
ment COM+ transactions as opposed to using standard ADO.NET transactions.

Why: Implementing transactions in serviced components (COM+ transactions) offers several
advantages, including the support for distributed databases, a higher degree of independence
from the database, and a cleaner object-oriented design (for example, you can use attributes to
select the transaction isolation level).

Why not: COM+ transactions use the Microsoft Distributed Transaction Coordinator (MS
DTC). DTC-based transactions can be from 10 to 50 percent slower than ADO.NET transac-
tions. When working with a single database server, you might decide to use ADO.NET trans-
actions from inside a standard .NET class rather than encapsulating the database code in a
serviced component.

More details: Another factor to consider when deciding which type of transaction to adopt is
that serviced components running under Microsoft Windows 2000 can use only the Serializ-
able isolation level; therefore, an ADO.NET transaction can give you more flexibility. Under
Microsoft Windows Server 2003, you can use the Transaction attribute to select the actual iso-
lation level (see rule 31.8).

C31621721.fm Page 474 Wednesday, January 12, 2005 10:58 PM

Chapter 31: Serviced Components 475

In some cases, you can reduce the overhead of COM+ transactions from inside serviced com-
ponents by turning off automatic enlistment of an ADO.NET connection. If you’re using the
Microsoft SQL Server .NET Data provider, you can disable automatic enlistment by setting the
Enlist attribute to false in the connection string, as follows:

Data Source=.;Integrated Security=SSPI;Initial Catalog=Pubs;Enlist=false

31.2 Static members

Avoid public static members (Shared in Visual Basic) in types that inherit from System.Enter-
priseServices.ServicedComponent.

Why: .NET serviced components support remote method invocation of their instance meth-
ods only. Also, COM+ interception doesn’t work with static members; thus, the transactional
context doesn’t flow correctly through static methods calls.

31.3 Library vs. server components

Follow these rules when deciding whether to implement a library or a server COM+ component:

a. Server components can run remotely, on a computer other than the client’s machine,
and therefore can improve the application’s scalability.

b. Server components can easily impersonate an identity other than the client’s identity.

c. Server components live inside separate applications that can be restarted automatically
under certain conditions.

d. If you don’t need the security, scalability, and fault tolerance features of server COM+
components, use client components to achieve better performance.

e. All the arguments passed to and returned from a method defined in a server component
must be either marked as serializable or derive from MarshalByRefObject.

f. Server components can run inside a Windows service.

g. Both library and server components must reside in strong-named assemblies. In
addtion, server components must be registered in the GAC.

How to: You decide between a server or library COM+ component by marking the assembly
with a suitable ApplicationActivation attribute (see example in rule 31.4).

31.4 Assembly-level attributes

Assign a value to the ApplicationName, ApplicationID, ApplicationActivation, and Description
attributes for assemblies that contain serviced components.

Why: The ApplicationName attribute is the name that identifies the application in the Compo-
nent Services administration snap-in; the Description attribute is used to describe the application
itself. The ApplicationID attribute assigns an explicit ID to the application. (If omitted, this ID is

C31621721.fm Page 475 Wednesday, January 12, 2005 10:58 PM

476 Part II: .NET Framework Guidelines and Best Practices

generated automatically when the component is registered.) The ApplicationName and Applica-
tionID attributes affect what you see in the General tab of the application’s Properties window.

More details: An explicit ApplicationID value is especially useful for having multiple assem-
blies share the same COM+ application (and therefore the same server-side process), which in
turn optimizes cross-component communication and marshaling. However, keep in mind
that this attribute prevents you from using COM+ 1.5 partitions; thus, you must omit it if you
plan to use partitions.

' [Visual Basic]

<Assembly: ApplicationName("BankMoneyMover")>

<Assembly: Description("Components for moving money between accounts")>

<Assembly: ApplicationID("F088FCFF-6FF0-496B-9121-DC9EB9DAEFFA")>

' This is a library COM+ component.

<Assembly: ApplicationActivation(ActivationOption.Library)>

' Assemblies containing serviced components must have a strong name.

<Assembly: AssemblyKeyFile("c:\codearchitects.snk")>

// [C#]

[assembly: ApplicationName("BankMoneyMover")]

[assembly: Description("Components for moving money between accounts")]

[assembly: ApplicationID("F088FCFF-6FF0-496B-9121-DC9EB9DAEFFA")]

// This is a library COM+ component.

[assembly: ApplicationActivation(ActivationOption.Library)]

// Assemblies containing serviced components must have a strong name.

[assembly: AssemblyKeyFile(@"c:\codearchitects.snk")]

Configuration attributes are important especially in the developing and test phase because
they help to register the serviced component correctly on the first launch and therefore sup-
port XCOPY deployment (this is known as dynamic or lazy registration). However, most
attributes related to serviced components are used only if the COM+ application doesn’t exist
yet. On the customer’s site, the application might be first launched by a user without admin-
istrative privileges and the installation would fail. For this reason, you should always rely on
the regsvcs tool to register the component.

The only attributes that are always read from the metadata in the component and that super-
sede the attributes in the COM+ catalog are JustInTimeActivation, AutoComplete, and Object-
Pooling, plus the SecurityRole attribute when used at the method level. The ObjectPooling
attribute in source code can enable or disable object pooling, but COM+ always uses the pool
size defined in the COM+ catalog.

31.5 The ClassInterface attribute

Apply the ClassInterface attribute to all serviced components to make them expose a dual
interface if you don’t need to apply role-based security (RBS) at the method level.

Why: If you omit this attribute, the Component Services MMC snap-in doesn’t list the compo-
nent’s individual methods. Also, late-bound calls from unmanaged clients would ignore the
AutoComplete attribute, and you’d be forced to commit or abort the transaction explicitly by
using code.

C31621721.fm Page 476 Wednesday, January 12, 2005 10:58 PM

Chapter 31: Serviced Components 477

Why not: You can’t apply this attribute when you need to apply method-level RBS, as
explained in rule 33.17.

' [Visual Basic]

<ClassInterface(ClassInterfaceType.AutoDual)> _

Public Class MoneyMover

Inherits ServicedComponent

...

End Class

// [C#]

[ClassInterface(ClassInterfaceType.AutoDual)]

public class MoneyMover : ServicedComponent

{

...

}

31.6 The JustInTimeActivation attribute

Mark serviced components with the JustInTimeActivation attribute.

Why: A JIT-activated component is more scalable and resource-savvy because the COM+ infra-
structure instantiates it only when one of its methods is invoked and destroys it when the
method completes, assuming that the method signals that the task has been completed or is
marked with an AutoComplete attribute (see rule 31.7). Also, pooled objects should always be
marked with the JustInTimeActivation attribute (see rule 31.11).

Why not: The JustInTimeActivation attribute should be used only for components that are
designed to be used in a stateless fashion. You can’t just add this attribute to a nontransac-
tional component that you have already tested because the attribute changes the component’s
lifetime and, consequently, the way clients should use the component.

Another potential problem of JIT-activated components: the server must keep alive a wrapper
of the component. Such a wrapper might take a significant amount of memory on the server;
therefore, unnecessarily using this attribute can affect the application’s performance and scal-
ability negatively.

The JustInTimeActivation attribute is mainly useful to prevent clients from using a stateless
component in an incorrect way. If you’re using a nontransactional component, you can usu-
ally get better performance by omitting this attribute and letting the client release the object
explicitly. If the client is itself stateless (for example, it’s an ASP.NET Web Forms application),
using this attribute is superfluous and might be avoided with nontransactional and nonpool-
able components.

More details: A transactional type, that is, a class flagged with the Transaction attribute, is also
implicitly a JIT-activated component. However, you should apply an explicit JustInTimeActiva-
tion attribute even to transactional types to make the code more readable and avoid problems
if you later decide to remove the Transaction attribute.

C31621721.fm Page 477 Wednesday, January 12, 2005 10:58 PM

478 Part II: .NET Framework Guidelines and Best Practices

' [Visual Basic]

<Transaction(TransactionOption.Required), JustInTimeActivation()> _

Public Class MoneyMover

Inherits ServicedComponent

...

End Class

// [C#]

[Transaction(TransactionOption.Required)]

[JustInTimeActivation]

public class MoneyMover : ServicedComponent

{

...

}

31.7 The AutoComplete attribute

Control the outcome of a transaction by applying the AutoComplete attribute rather than by
invoking the SetComplete or SetAbort methods. Explicitly throw exceptions if the transaction
should be aborted and avoid catching exceptions (unless you rethrow them) when calling
other components or methods exposed by .NET Framework objects.

Why: A serviced component should throw an exception whenever something goes wrong.
Using the AutoComplete attribute helps you enforce this rule and makes your code more con-
cise and easier to debug.

' [Visual Basic]

<AutoComplete()> _

Public Sub TransferMoney(ByVal accountID As Integer, ByVal amount As Decimal)

...

End Sub

// [C#]

[AutoComplete]

public void TransferMoney(int accountID, decimal amount)

{

...

}

31.8 The Transaction attribute

As a rule, use the default Serializable value for the Transaction attribute.

Why: Sticking to the default isolation level makes the component more easily reusable and
avoids several potential problems.

Why not: You can usually achieve better performance by using a different isolation level. (You can
set a nondefault value only in Microsoft Windows XP and Windows Server 2003 platforms.)

More details: The isolation level of a transaction is determined by the root component—that
is, the first transactional component in the call chain. If this root component calls a child

C31621721.fm Page 478 Wednesday, January 12, 2005 10:58 PM

Chapter 31: Serviced Components 479

component whose isolation level is equal to or higher than the root’s isolation level, every-
thing works smoothly; otherwise, the cross-component call will fail with an E_ISOLATION-
LEVELMISMATCH error.

You can set the transaction support and the isolation level also from the Component Services
MMC snap-in, as shown in Figure 31-1.

See also: See rules 31.1, 31.9, and 31.10 for exceptions to this rule.

' [Visual Basic]

<Transaction(TransactionOption.Required, _

Isolation:=TransactionIsolationLevel.Serializable)> _

Public Class MoneyMover

Inherits ServicedComponent

...

End Class

// [C#]

[Transaction(TransactionOption.Required, Isolation=TransactionIsolationLevel.Serializable)]

public class MoneyMover : ServicedComponent

{

...

}

Figure 31-1 The Transactions page of a serviced component’s Properties dialog box

31.9 Isolation level for nonroot components

Consider using the TransactionIsolationLevel.Any value as the isolation level for nonroot
components.

Why: This special value forces the component to use the isolation level set by the component
that is the root of the current transaction and offers a simple mechanism for making the com-
ponent reusable in different situations.

C31621721.fm Page 479 Wednesday, January 12, 2005 10:58 PM

480 Part II: .NET Framework Guidelines and Best Practices

' [Visual Basic]

<Transaction(TransactionOption.Supported, Isolation:=TransactionIsolationLevel.Any)> _

Public Class MoneyMover

Inherits ServicedComponent

...

End Class

// [C#]

[Transaction(TransactionOption.Supported, Isolation=TransactionIsolationLevel.Any)]

public class MoneyMover : ServicedComponent

{

...

}

31.10 Types with methods that require different isolation levels

If a type exposes methods that require different isolation levels, consider creating a facade
component that uses two (or more) types marked with different Transaction attributes.

Example: Let’s say that you have one method that updates a database and requires the Serializ-
able level, whereas another method performs a read operation for which a ReadCommitted level
would be enough. If a component exposes both these methods, the best you can do is mark the
component with a Transaction attribute that specifies a Serializable isolation level and accept the
unnecessary overhead that results when the latter method is invoked. To avoid this overhead,
you can create two additional classes: one that performs all the write operations at the Serializ-
able level, and one that performs all read operations at the ReadCommitted level. The original
component would have no Transaction attribute and would be responsible only for dispatching
calls to one of the two types, depending on whether it’s a write or a read operation.

31.11 Poolable objects

Override the CanBePooled method to ensure that the object is returned to the pool as soon as
it has completed its job. Remember that pooled objects should be marked with the JustIn-
TimeActivation attribute (see rule 31.5).

Why: Object pooling enables you to use resources effectively if clients create many objects and
these objects take a significant time to initialize. In addition, pooling gives you the ability to
configure the maximum number of objects that can be running at any given time. You need to
employ the technique described in this guideline because serviced components aren’t pool-
able by default.

Why not: You might decide not to use object pooling for objects that initialize very quickly.
Also, object pooling shouldn’t be used to implement a singleton model by forcing the maxi-
mum size of the pool to one.

How to: You can make a component poolable by marking it with an ObjectPooling attribute.
You can also specify the minimum and/or the maximum number of objects in the pool, even
though the values entered in the Component Services MMC snap-in have higher priority than
those specified in the ObjectPooling attribute (see Figure 31-2). However, keep in mind that

C31621721.fm Page 480 Wednesday, January 12, 2005 10:58 PM

Chapter 31: Serviced Components 481

the higher value you assign to the MinPoolSize property, the longer the first instantiation of
the component will take.

' [Visual Basic]

<ObjectPooling(True, MinPoolSize:=4, MaxPoolSize:=20), _

JustInTimeActivation()> _

Public Class MoneyMover

Inherits ServicedComponent

Protected Overrides Function CanBePooled() As Boolean

Return True

End Function

End Class

// [C#]

[ObjectPooling(true, MinPoolSize=4, MaxPoolSize=20)]

[JustInTimeActivation()]

public class MoneyMover : ServicedComponent

{

protected override bool CanBePooled()

{

return true;

}

}

Figure 31-2 The Activation tab of the Properties page of a COM+ component enables you to
change object pooling settings.

31.12 The ApplicationAccessControl attribute

Add an assembly-level ApplicationAccessControl attribute to enable COM+ role-based secu-
rity and to enforce checks at the process and component level.

More details: In .NET Framework version 1.1, the COM+ security is enabled by default if the
ApplicationAccessControl attribute is omitted; in version 1.0, COM+ security was disabled by
default. Explicitly adding this attribute is recommended to improve readability.

C31621721.fm Page 481 Wednesday, January 12, 2005 10:58 PM

482 Part II: .NET Framework Guidelines and Best Practices

' [Visual Basic]

<Assembly: ApplicationAccessControl(True, _

AccessChecksLevel:=AccessChecksLevelOption.ApplicationComponent)>

// [C#]

[assembly: ApplicationAccessControl(true,

AccessChecksLevel=AccessChecksLevelOption.ApplicationComponent)]

31.13 The authentication level

In server applications, set the authentication level to Privacy, unless it is safe to use less severe
settings.

More details: The authentication level of a library component is inherited from the client pro-
cess. The Authentication property of the ApplicationAccessControl attribute lets you decide how
a server component authenticates data coming from the caller. Setting the authentication level to
Privacy ensures that COM+ authenticates the caller’s credentials and encrypts each data packet,
thus providing the most secure type of authentication but affecting performance negatively. If
data sniffing isn’t an issue, you might decide to use a more efficient setting, such as Connect
(authenticates credentials only when the connection is established), Call (authenticates creden-
tials on each call), Packet (authenticates credentials and ensures that all packets are received), or
Integrity (authenticates credentials and ensures that no data packet has been modified).

' [Visual Basic]

<Assembly: ApplicationAccessControl(True, _

AccessChecksLevel:=AccessChecksLevelOption.ApplicationComponent, _

Authentication:=AuthenticationOption.Privacy)>

// [C#]

[assembly: ApplicationAccessControl(true,

AccessChecksLevel=AccessChecksLevelOption.ApplicationComponent,

Authentication=AuthenticationOption.Privacy)]

Remember that the actual authentication level used by a COM+ component depends also on
the authentication level set by the client. When the component’s and the client’s authoriza-
tion levels differ, COM+ uses the higher level of the two. If the client is an ASP.NET applica-
tion, you can configure its authentication level by means of the comAuthenticationLevel
attribute in the <processModel> element in machine.config.

31.14 The impersonation level

In server applications, set the impersonation level to Identify, unless you need to enable
impersonation or delegation.

More details: The impersonation level of a library COM+ component is inherited from the cli-
ent process and can’t be changed. The ImpersonationLevel property of the ApplicationAccess-
Control attribute lets you decide whether another component called by the current COM+
component can discover the identity of the caller and can impersonate the caller when calling

C31621721.fm Page 482 Wednesday, January 12, 2005 10:58 PM

Chapter 31: Serviced Components 483

services running on different computers. The available settings are Anonymous (the compo-
nent is unaware of the caller’s identity and can’t access local or remote resources on the
caller’s behalf), Identify (the component can determine the caller’s identity), Impersonate
(the component impersonates the caller when accessing local resources, or even resources on
a different computer if the caller resides on the same machine as the component), and Dele-
gate (the component impersonates the caller when accessing resources on the local computer
as well as any remote server; this setting requires the Kerberos authentication services and
that the Active Directory directory service is configured on both the client and the server
machine).

When using the Identity setting, the called COM+ component can use the SecurityCallCon-
text object to determine the caller’s identity (the DirectCaller property) and whether the caller
is in a given role (the IsCallerInRole method), but the component can’t impersonate the caller
when accessing a database or other resources, either on the same machine or on a remote
server. Because the trusted subsystem is recommended in multitiered architectures (see rule
29.27), impersonation and delegation are usually neither necessary nor desirable.

' [Visual Basic]

<Assembly: ApplicationAccessControl(True, _

AccessChecksLevel:=AccessChecksLevelOption.ApplicationComponent, _

Authentication:=AuthenticationOption.Privacy, _

ImpersonationLevel:=ImpersonationLevelOption.Identify)>

// [C#]

[assembly: ApplicationAccessControl(true,

AccessChecksLevel=AccessChecksLevelOption.ApplicationComponent,

Authentication=AuthenticationOption.Privacy,

ImpersonationLevel=ImpersonationLevelOption.Identify)]

31.15 The ComponentAccessControl attribute

Add a class-level ComponentAccessControl attribute to enable security checks for that com-
ponent.

More details: This attribute is ignored if access checks are enabled only at the application
level (see rule 31.12).

' [Visual Basic]

<ComponentAccessControl(True)> _

Public Class MoneyMover

Inherits ServicedComponent

...

End Class

// [C#]

[ComponentAccessControl(true)]

public class MoneyMover : ServicedComponent

{

...

}

C31621721.fm Page 483 Wednesday, January 12, 2005 10:58 PM

484 Part II: .NET Framework Guidelines and Best Practices

31.16 The SecurityRole attribute

Add one or more assembly-level SecurityRole attributes that define all the user roles recog-
nized by the application. Always include a SecurityRole attribute that adds the Everyone user
to the Marshaler role if you plan to enable method-level security.

More details: You can apply the SecurityRole attribute at the assembly, class, and method
level. When applied at the assembly level, it defines which users can activate any component
in the application, provided that you’ve applied an ApplicationAccessControl(true) attribute.
When applied at the class level, it defines which users can call any method in that class, pro-
vided that you have applied a ComponentAccessControl(true) attribute to the class. You
apply the SecurityRole attribute to individual methods only when you enable security at the
method level, as explained in rule 31.17.

The registration process adds all the roles that you specify in SecurityRole attributes in the
COM+ catalog. By default, these roles contains no users, but you can add the Everyone user to
a role by passing true in the second argument (which corresponds to the SetEveryoneAccess
property). Users other than Everyone can be added to a role only by means of the COM+
explorer or by using an administrative script.

' [Visual Basic]

' Accountants can launch this application; all users are in this role.

<Assembly: SecurityRole("Accountants", True)>

' Create the Managers role, but don't add any users to it.

<Assembly: SecurityRole("Managers")>

' Prepare the application for security at the method level.

<Assembly: SecurityRole("Marshaler", True)>

<SecurityRole("Readers", True, Description:="Users who can read")> _

Public Class MoneyMover

Inherits ServicedComponent

...

End Class

// [C#]

// Accountants can launch this application; all users are in this role.

[assembly: SecurityRole("Accountants", true)]

// Create the Managers role, but don't add any users to it.

[assembly: SecurityRole("Managers")]

// Prepare the application for security at the method level.

[assembly: SecurityRole("Marshaler", true)]

[SecurityRole("Readers", true, Description="Users who can read")]

public class MoneyMover : ServicedComponent

{

...

}

C31621721.fm Page 484 Wednesday, January 12, 2005 10:58 PM

Chapter 31: Serviced Components 485

31.17 COM+ role-based security at the method level

Follow these steps to correctly enable role-based security (RBS) at the method level:

1. Ensure that you marked the assembly with an ApplicationAccessControl(true) attribute
(see rule 31.12) and the serviced component class with a ComponentAccessCon-
trol(true) attribute whose AccessChecksLevel property is set to ApplicationComponent
(see rule 31.15).

2. Add an assembly-level SecurityRole attribute that adds the Everyone user to the Mar-
shaler role (see rule 31.16).

3. Mark the serviced component class with the SecureMethod attribute.

4. Define the methods to be secured in a separate interface and have the serviced compo-
nent class implement the interface.

5. Apply the SecurityRole attribute to methods in the class, specifying which role can call
which method, or use the MMC snap-in to perform this step from the user interface as
shown in Figure 31-3. (Alternatively, you can add the SecurityRole attribute at the class
level to configure all methods in the class for that role.)

' [Visual Basic]

<Assembly: ApplicationAccessControl(True, _

AccessChecksLevel:=AccessChecksLevelOption.ApplicationComponent)>

<Assembly: SecurityRole("Marshaler", True)>

Public Interface IMoneyMover

Sub MoveMoney(ByVal accountID As String, ByVal amount As Decimal)

End Interface

<ComponentAccessControl(True), SecureMethod()> _

Public Class MoneyMover

Inherits ServicedComponent

Implements IMoneyMover

<SecurityRole("Accountants", True)> _

Public Sub MoveMoney(ByVal accountID As String, ByVal amount As Decimal) _

Implements IMoneyMover.MoveMoney

...

End Sub

End Class

// [C#]

[assembly: ApplicationAccessControl(true,

AccessChecksLevel=AccessChecksLevelOption.ApplicationComponent)]

[assembly: SecurityRole("Marshaler", true)]

public interface IMoneyMover

{

void MoveMoney(string accountID, decimal amount);

}

C31621721.fm Page 485 Wednesday, January 12, 2005 10:58 PM

486 Part II: .NET Framework Guidelines and Best Practices

[ComponentAccessControl(true)]

[SecureMethod()]

public class MoneyMover : ServicedComponent, IMoneyMover

{

[SecurityRole("Accountants", true)]

public void MoveMoney(string accountID, decimal amount)

{

...

}

}

Notice that the SecureMethod attribute at the class level isn’t strictly required if you use a
SecurityRole attribute at the method level, but we recommend that you keep both attributes
for increased readability.

Figure 31-3 You can enforce which roles can call the component using the Security page in the
Properties dialog box of individual methods.

31.18 Programmatic security

Use the SecurityCallContext object to perform programmatic security and always explicitly
test that the IsSecurityEnabled property is true. Don’t use the ContextUtil class to implement
programmatic security.

Why: The SecurityCallContext object exposes a more complete set of security-related meth-
ods than the ContextUtil class. However, IsCallerInRole and other methods return true even
if role-based security (RBS) is disabled; thus, you should always explicitly check that RBS is
enabled by testing the IsSecurityEnabled property, as follows:

' [Visual Basic]

Dim scc As SecurityCallContext = SecurityCallContext.CurrentCall

If Not scc.IsSecurityEnabled Then

Throw New Exception("This method requires role-based security")

ElseIf scc.IsCallerInRole("Managers") Then

...

End If

C31621721.fm Page 486 Wednesday, January 12, 2005 10:58 PM

Chapter 31: Serviced Components 487

// [C#]

SecurityCallContext scc = SecurityCallContext.CurrentCall;

if (! scc.IsSecurityEnabled)

throw new Exception("This method requires role-based security");

else if (scc.IsCallerInRole("Managers"))

...

31.19 Component identity

Run a server COM+ component under the identity of a least-privileged specific account. Never
run the component under the interactive user’s identity, and avoid using predefined system
accounts.

Why: Running the component under the identity of the interactive user is OK only during the
development phase because this setting enables you to display message boxes and other diag-
nostic messages. In real applications, you should always define an ad-hoc account that has
only the privileges that the application strictly requires, for example, access to certain directo-
ries and registry keys. This technique gives you more granular security than the one offered by
predefined system accounts such as Local Service, Network Service, and Local System.

31.20 Disposing of a serviced component

The client application should dispose of all serviced components that aren’t JIT-activated as soon
as it is finished with them. The recommended way to do so is by calling the component’s Dispose
method, rather than by means of the ServicedComponent.DisposeObject static method.

' [Visual Basic]

' *** OK

ServicedComponent.DisposeObject(obj)

' *** Better

obj.Dispose()

// [C#]

// *** OK

ServicedComponent.DisposeObject(obj);

// *** Better

obj.Dispose();

For performance reasons, a serviced component should never implement the Finalize method
because such a method would be called through reflection. Instead, override the protected
Dispose(disposed) method and place all finalization code there.

31.21 WebMethod attributes in serviced components

Never mark a public method of a serviced component with a WebMethod attribute to make it
callable through the Web service infrastructure.

Why: Both serviced components and Web services offer remote clients the ability to call meth-
ods in a .NET component. However, these two remoting technologies might conflict with each
other because of the way they enable the transaction and context flow from the client and the
component; therefore, you should never mix the two techniques in the same component.

C31621721.fm Page 487 Wednesday, January 12, 2005 10:58 PM

