
47

Chapter 6

Types

A Microsoft .NET Framework type is a more general concept than a .NET class. More specifi-
cally, a class is what is also called a reference type, whereas a structure is known as a value type.
The difference between these two flavors of the type concept is particularly important and is
thoroughly explained in many articles and books. In this chapter, we focus on when you
should render a type as a class or a structure and also cover many other guidelines related to
types, including how to name them, how to group their members, how to apply scope qualifi-
ers, and when to use nested types.

Note One or more code examples in this chapter assume that the following namespace has
been imported by means of an Imports (Visual Basic) or using (C#) statement:

System.Diagnostics

6.1 Type names

Use the following guidelines for type names:

a. Use PascalCase for type names. Example: Customer, ForeignCustomer.

b. Don’t use underscores inside type names.

c. Try to avoid class and structure names with a leading I character to minimize confusion
with interface types; use casing if you can’t help having a name beginning with the I
character. Example: Invoice.

6.2 U.S. English for identifiers

Use American English for type and member names. For example, use Color (U.S. English)
rather than Colour (U.K. English).

Why: Developers outside the United States might consider this rule as quite arbitrary and too
U.S.-centric, but it undoubtedly has one important benefit: type and member U.S. English
names can look like names used in the .NET Framework, thus many developers will feel at
ease with these identifiers.

6.3 Abbreviations and acronyms

Follow these guidelines to decide how you should render abbreviations and acronyms:

a. Don’t use abbreviations in type and member names.

C06621721.fm Page 47 Wednesday, January 12, 2005 9:48 PM

48 Part I: Coding Guidelines and Best Practices

b. Use acronyms only if they are well known among the developer community.

c. Use all-uppercase style for acronyms of two characters.

d. Use PascalCase for acronyms with three characters or more.

Example: UIThread, AsciiDocument, HtmlParser.

More details: Even though these guidelines come from Microsoft, notice that some class
names in the .NET Framework incorrectly use uppercase for acronyms, for example, ASCIIEn-
coding and CLSCompliant.

6.4 Words to avoid

Avoid using the words listed in Table 6-1 as type or member names. The table includes all
Visual Basic and C#, including keywords from their 2005 versions (in beta version as of this
writing).

Table 6-1 Words to Avoid

abstract AddHandler AddressOf Alias And

AndAlso Ansi As Assembly Auto

Base bool Boolean break ByRef

Byte ByVal Call Case Catch

CBool CByte CChar CDate CDec

CDbl Char checked CInt Class

CLng CObj Const continue CSByte

CShort CSng CStr CType CUInteger

CULong CUShort Custom Date Decimal

Declare Default Delegate Dim Do

Double Each Else ElseIf End

Enum Erase Error eval Event

Exit explicit extends extern ExternalSource

False Finalize Finally fixed float

For foreach Friend Function Get

GetType Global Goto Handles If

Implements implicit Imports In Inherits

instanceof int Integer Interface internal

Is IsFalse IsNot IsTrue Let

Lib Like lock Long Loop

Me Mod Module MustInherit MustOverride

My MyBase MyClass Namespace Narrowing

New Next Not Nothing NotInheritable

NotOverridable null Object Of On

C06621721.fm Page 48 Wednesday, January 12, 2005 9:48 PM

Chapter 6: Types 49

More details: You should also avoid names that match .NET Framework namespaces, such as
System, Forms, Web, UI, Collections, Win32, and so on.

6.5 One type per source file

Each source file should contain only one type definition.

Exception: See rules 6.7, 8.2, and 10.1 for exceptions to this rule.

6.6 Type complexity

Consider splitting a type with many methods and properties into one main class and one or
more dependent classes. A simple rule of thumb is to consider a type as a candidate for split-
ting when it exposes many properties or methods with similar names.

Why: Code in smaller types can be reused more easily.

Example: Let’s say you have a Person class that exposes many similar properties such as
HomeAddress, HomeCity, HomeZipCode, HomeState, and HomeCountry. Such an entity can
be better represented by two distinct types, Person and Location, where Person exposes one
property of type Location.

' [Visual Basic]

Public Class Person

Public Property Home() As Location

...

End Property

End Class

operator Option Optional Or OrElse

out Overloads Overridable override Overrides

package ParamArray params Partial Preserve

Private Property Protected Public RaiseEvent

ReadOnly ReDim ref Region Rem

RemoveHandler Resume Return sbyte sealed

Select Set Shadows Shared Short

Single sizeof stackalloc Static Step

Stop String struct Structure Sub

switch SyncLock Then this Throw

To True Try TryCast TypeOf

uint UInteger ulong ushort unchecked

Unicode unsafe Until using var

virtual void volatile When While

Widening With WithEvents WriteOnly Xor

yield

Table 6-1 Words to Avoid

C06621721.fm Page 49 Wednesday, January 12, 2005 9:48 PM

50 Part I: Coding Guidelines and Best Practices

// [C#]

public class Person

{

public Location Home

{

...

}

}

The benefit of having a separate Location type becomes apparent if you later decide to imple-
ment other similar properties, such as Work (for the office’s address), Vacation, and so forth.

6.7 Dependency on external variables

Ensure that code inside a type doesn’t reference any external variable, including global vari-
ables defined in a module (Visual Basic) or static fields or properties exposed by another type.
All the values that a type needs should be assigned to the type’s properties or passed as argu-
ments to its constructors or methods.

Why: Self-containment is the key to code reuse: if the type doesn’t depend on any other type,
you can drop it in a different project with fewer or no side effects. Besides, the code in the type
can’t be broken by accidentally or purposely assigning an invalid value to the external variable,
and you don’t have to synchronize access to the global variable in a multithreaded environment.

Why not: In many complex object hierarchies, you must be prepared to relax this rule to an
extent. For example, you might decide to have one class that contains all the configuration set-
tings of the assembly, in which case many types in the assembly have to read values from static
fields of the configuration class.

More details: If you can’t help breaking this rule, you can at least ensure that external values
are implemented as properties (as opposed to fields) so that you can validate them and ensure
that they are never invalid. Also, if just two or three types depend on one another, you can mit-
igate this rule by having all of them stored in the same source file.

6.8 Module names [Visual Basic]

Don’t use any special suffix or naming convention for Visual Basic modules.

Why: Modules are just types whose members are all static, so they shouldn’t be dealt with in
a different way.

6.9 App type or module

Use App name for the module (Visual Basic) or the class (C#) that contains the Main proce-
dure. Don’t place the Main procedure in a Windows Forms class.

C06621721.fm Page 50 Wednesday, January 12, 2005 9:48 PM

Chapter 6: Types 51

6.10 Globals class

Use Globals for the type that contains all the global variables of the current application.
Global variables are implemented as static fields of this type. (Visual Basic developers can also
use a module.)

Why: References to those variables are in the form Globals.VariableName and are therefore
more readable and easier to spot.

See also: See rule 6.7 about why you should avoid dependency on global variables. Visual
Basic developers should also read rule 18.4 about referencing members of a module.

6.11 Member names from common interfaces

Avoid names used in common .NET interfaces if your property or method doesn’t implement
that interface.

Example: Examples of such methods are Count, Clone, Dispose, CompareTo, Compare,
GetEnumerator, and GetObjectData.

6.12 Case sensitivity in member names [C#]

Never define public members using names that differ only in the casing of the characters.
Private members using names that differ only in casing aren’t recommended either.

Why: Names that differ only in their case make it harder to read the source code. In addition,
if you have two or more public members that differ only in their casing, only one of them is
visible to client applications written in Visual Basic or another case-insensitive .NET language.

Example: Examples of members that should be avoided are count and Count, UserName and
userName.

6.13 Member ordering and grouping

Group members of the same kind (fields, properties, methods, etc.), and use a #region direc-
tive to collapse them easily. Always adopt the same order when defining members.

Example: Always define type members in this order:

1. Event and delegate definitions

2. Private and public fields, except those wrapped by properties (see rule 12.17)

3. Constructors, including static constructors

4. Instance public properties (and the private fields they wrap)

5. Instance public methods

C06621721.fm Page 51 Wednesday, January 12, 2005 9:48 PM

52 Part I: Coding Guidelines and Best Practices

6. Static public methods and properties

7. Methods in interfaces

8. Private (helper) methods

6.14 Language-specific member types

Use the language-specific keywords when defining the type of fields, properties, and methods.
For example, use Integer (Visual Basic) or int (C#) rather than Int32 or System.Int32.

Why: Developers feel it is more natural to use keywords that they know well. Besides, the
Microsoft Visual Studio .NET code editor renders language-specific types with a different
color, thus increasing code readability.

' [Visual Basic]

' *** OK

Dim total As Int32

' *** Better

Dim total As Integer

// [C#]

// *** OK

private Int32 total;

// *** Better

private int total;

Alternative rule: Many .NET developers prefer using names specific to .NET (e.g., Int32) in
the definition of a field, property, method, or parameter. The rationale behind this guideline is
that, everything being an object in the .NET Framework, integer and string values shouldn’t
be dealt with in any special way and shouldn’t be rendered with a different color in the code
editor. Arguably, this style makes the source code more readable for developers who work in
other languages. Another good point in favor of this style is that it works well with methods
whose names contain the name of the .NET type they return, as in this example:

' [Visual Basic]

' *** OK, but return type doesn't match suffix in method name.

Function GetDataInt32() As Integer

...

End Function

' *** Better

Function GetDataInt32() As Int32

...

End Function

// [C#]

// *** OK, but return type doesn't match suffix in method name.

public int GetDataInt32()

{}

// *** Better

public Int32 GetDataInt32()

{}

C06621721.fm Page 52 Wednesday, January 12, 2005 9:48 PM

Chapter 6: Types 53

More details: Both guidelines have their merits; therefore, we list both of them. In this
book, we have used language-specific types because we believe that most readers are more
familiar with this style.

6.15 Nested types

Use a private or internal (Friend in Visual Basic) scope qualifier for nested types.

Why: A type should be nested if it is used only by the type that encloses it; therefore, in most
cases there is no reason for making the nested type public.

Exception: Nested enumerators and comparers can be given public scope.

6.16 Member scope

Don’t make a field, a property, or a method public if that isn’t necessary. Mark it with the
Friend (Visual Basic) or internal (C#) keyword if it isn’t meant to be invoked from other assem-
blies; mark it as private if it isn’t meant to be invoked from other types in the current assembly.

6.17 Explicit scope qualifier

Always explicitly use a scope keyword for all types and members.

Why: The default scope for Visual Basic type members is Public, whereas the default scope for
C# is private. Omitting the scope keyword might disorient developers who are more familiar
with other languages.

' [Visual Basic]

' *** OK

Sub PerformTask()

...

End Sub

' *** Better

Public Sub PerformTask()

...

End Sub

// [C#]

// *** OK

void PerformTask()

{}

// *** Better

private void PerformTask()

{}

More details: Visual Basic developers shouldn’t use the Dim keyword to define type-level fields
because this keyword implies a private scope if used inside a class, but it implies a public scope if
used inside a structure. Favor using explicit Private and Public keywords so that you can later
change the class to a structure (and vice versa) with minimal impact on the remainder of the
application.

C06621721.fm Page 53 Wednesday, January 12, 2005 9:48 PM

54 Part I: Coding Guidelines and Best Practices

' [Visual Basic]

' *** Wrong

Structure Person

Dim FirstName As String ' These are public fields.

Dim LastName As String

End Function

' *** Better: explicit Public keyword

Structure Person

Public FirstName As String

Public LastName As String

End Function

6.18 Shadowed members

Avoid Shadows (Visual Basic) or new (C#) keywords in favor of Overridable and virtual key-
words, respectively, to redefine methods and properties in derived types.

6.19 Non-CLS-compliant types [C#]

Try to avoid public methods or properties that take or return object types that aren’t compli-
ant with Common Language Specifications (CLS), such as unsigned integers. If you can’t
avoid these members, mark them with the CLSCompliant(false) attribute.

Why: Methods that take or return unsigned integers aren’t callable from Visual Basic and
some other .NET languages.

// [C#]

public class SampleClass

{

[CLSCompliant(false)]

public void PerformTask(uint x)

{}

}

More details: The C# compiler checks the CLS compliance and honors the CLSCompliant
attribute only for public members in public types and emits a compilation error if a member
is incorrectly marked as CLS-compliant. You can’t mark a type or a member as CLS-compliant
unless the assembly is also marked with a CLSCompliant(true) attribute (see rule 4.5).

6.20 The Me/this keyword

Avoid the Me (Visual Basic) or this (C#) keyword to reference a field or a property unless it
helps make the code less ambiguous.

Exception: Using the Me or this keyword is OK in a method or a constructor that has a param-
eter or a local variable whose name is the same or is similar to the name of a class-level field or
property.

C06621721.fm Page 54 Wednesday, January 12, 2005 9:48 PM

Chapter 6: Types 55

' [Visual Basic]

Class Person

' These would be properties in a real-world application.

Public FirstName As String

Public LastName As String

Sub New(ByVal firstName As String, ByVal lastName As String)

Me.FirstName = firstName

Me.LastName = lastName

End Sub

End Class

// [C#]

class Person

{

// These would be properties in a real-world application.

public string FirstName;

public string LastName;

public Person(string firstName, string lastName)

{

this.FirstName = firstName;

this.LastName = lastName;

}

}

6.21 "New" member [C#]

Don’t use public member names that match Visual Basic keywords, more specifically the New
keyword.

Why: Visual Basic developers would need to enclose the name in square brackets to access a
method named New:

' [Visual Basic]

' MyType is a C# type that exposes a New void method.

Dim o As New MyType

' This is the syntax required to access that method from Visual Basic.

o.[New]()

6.22 The Conditional attribute

Use the Conditional attribute instead of the #If (Visual Basic) or #if (C#) compiler directive to
exclude a method and all the statements that invoke it.

' [Visual Basic]

' *** Wrong

#If DEMOVERSION Then

ShowNagScreen()

#End If

Sub ShowNagScreen()

...

End Sub

C06621721.fm Page 55 Wednesday, January 12, 2005 9:48 PM

56 Part I: Coding Guidelines and Best Practices

' *** Correct

ShowNagScreen() ' No need for #If directive

<Conditional("DEMOVERSION")> _

Sub ShowNagScreen()

...

End Sub

// [C#]

// *** Wrong

#if DEMOVERSION

ShowNagScreen();

#endif

void ShowNagScreen()

{

...

}

// *** Correct

ShowNagScreen(); // No need for #If directive

[Conditional("DEMOVERSION")]

void ShowNagScreen()

{

...

}

More details: The Conditional attribute can discard all the statements that invoke the
method, but it doesn’t discard the method definition itself, so you can still invoke it through
reflection. The Visual Basic developer should also keep in mind that the Conditional attribute
is ignored when applied to methods that return a value: in other words, Function methods are
always included, even if they’re marked with a Conditional attribute. (The C# compiler cor-
rectly flags these cases as compilation errors.) If you need to receive a value back from a
method marked with the Conditional attribute, you must use an argument passed with the
ByRef (Visual Basic) or ref (C#) keyword. You shouldn’t use an out parameter because the com-
piler would flag the passed variable as unassigned if the Conditional attribute discards the
method call that initializes the variable.

6.23 The Serializable attribute

As a rule, apply the Serializable attribute to all nonsealed classes, but mark all nonserializable
fields with the NonSerialized attribute.

Why: This technique ensures that instances of this class (and of all types that inherit from it)
can be passed as arguments to remote methods.

See also: See rule 12.26 about nonserializable fields and rule 17.23 about events in serializ-
able types.

C06621721.fm Page 56 Wednesday, January 12, 2005 9:48 PM

Chapter 6: Types 57

6.24 The Obsolete attribute

Mark deprecated types and members with the Obsolete attribute so that clients receive a compile
warning when they use the deprecated member. The attribute’s Message property should
describe why the code element is obsolete and what should be used in its place. In later versions
of your class library, consider passing True as the second argument of the Obsolete attribute to
cause a compile error and therefore force clients to remove any reference to the member.

More details: You should never remove a type (or a member of a type) without marking it
obsolete in at least one or two versions of your library.

' [Visual Basic]

' Cause a compilation warning.

<Obsolete("Call ShellSort instead")> _

Sub BubbleSort()

...

End Sub

' Cause a compilation error.

<Obsolete("Call ShellSort instead", True)> _

Sub BubbleSort()

...

End Sub

// [C#]

// Cause a compilation warning.

[Obsolete("Call ShellSort instead")]

void BubbleSort()

{

...

}

// Cause a compilation error.

[Obsolete("Call ShellSort instead", true)]

void BubbleSort()

{

...

}

C06621721.fm Page 57 Wednesday, January 12, 2005 9:48 PM

