
397

Chapter 11

Generics

In this chapter:

The Need for Generics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Authoring Generic Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

Advanced Topics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

Unless you are absolutely new to Microsoft .NET programming—or you’re a .NET developer 
who has lived on a desert island for the last two years—you should have heard about generics 
and the fact that they are the most important addition to Microsoft Visual Basic and other 
.NET languages. In this chapter, I show that generics are indeed a very important new feature 
of your favorite language and illustrate several examples of what generics can do to make your 
code faster, more concise, and more elegant.

In a nutshell, generics give you the ability to define a class that takes a type as an argument. 
Depending on the type argument, the generic definition generates a different concrete class. In 
this sense, generics add a degree of polymorphism, much like other techniques based on 
inheritance, interfaces, or late binding. But you’ll soon discover that generics are much, much 
more powerful.

Before we dive into the topic, bear in mind that generics aren’t a completely new concept in 
the programming world. In fact, .NET generics are similar to C++ templates, so you might 
already be familiar with the underlying concepts if you’ve worked in that language before. 
However, .NET generics have several features and advantages that C++ templates don’t, for 
example, constraints. 

Note To avoid long lines, code samples in this chapter assume that the following Imports 
statements are used at the file or project level:

Imports System.Collections 

Imports System.Collections.Generic

The Need for Generics
Let’s start with a classic example that shows why generics can be so useful. Let’s consider the 
ArrayList type, defined in the System.Collections namespace. I cover this and other collection-

C11621837.fm  Page 397  Saturday, December 10, 2005  7:17 PM



398 Part II: Object-Oriented Programming

like types in Chapter 13, “Arrays and Collections,” but for now it will suffice to see how you 
can define such a collection and add elements to it:

' This collection will contain only integer numbers. 

Dim col As New ArrayList() 

col.Add(11): col.Add(13): col.Add(19) 

For Each n As Integer in col 

Console.WriteLine(n) 

Next 

' Reading an element requires a CType or CInt operator (if Option Strict is On). 

Dim element As Integer = CType(col(0), Integer)

As simple as it is, this code has a couple of serious problems, one related to robustness and 
the other related to performance. The former problem is quite simple to demonstrate: the 
ArrayList was designed to store values of any kind, hence it stores its value internally inside 
System.Object slots. This means that a developer using the ArrayList can accidentally or 
purposely add an element that isn’t an integer, an action that would make the For Each loop 
fail at run time:

' Adding a string to the collection doesn't raise any compile-time error… 

col.Add("abc") 

' …but it makes the following statement fail at run time. 

For Each n As Integer in col 

Console.WriteLine(n) 

Next

Also, the latter problem depends on the ArrayList using System.Object variables internally 
and manifests itself when you use the ArrayList to store value-typed elements, such as num-
bers, enumerated values, DataTime values, and any user-defined structure. In fact, when you 
store a value-typed element in an Object variable, the element must be boxed. As you can 
recall from the section titled “Reference Types and Value Types” in Chapter 2, “Basic Language 
Concepts,” a box operation takes both CPU cycles and memory from the managed heap, and 
therefore it should be avoided if possible.

The Traditional Solution

Under previous versions of the .NET Framework you can solve the former problem and make 
the code more robust by defining a new class that inherits from the CollectionBase type, also 
in the System.Collections namespace. This type is one of the many abstract types provided in 
the .NET Framework with the purpose of enabling developers to define their own strong-
typed collection classes. Here’s a very simple implementation of a custom collection class that 
can store only integers:

Public Class IntegerCollection 

Inherits CollectionBase 

 

Public Sub Add(ByVal item As Integer) 

Me.List.Add(item) 

End Sub 

 

C11621837.fm  Page 398  Saturday, December 10, 2005  7:17 PM



Chapter 11: Generics 399

Public Sub Remove(ByVal item As Integer) 

Me.List.Remove(item) 

End Sub 

 

Default Public Property Item(ByVal index As Integer) As Integer 

Get 

Return CType(Me.List(index), Integer) 

End Get 

Set(ByVal Value As Integer) 

Me.List(index) = Value 

End Set 

End Property 

End Class

The code is quite simple: each method of your IntegerCollection class takes or returns an Inte-
ger value and delegates to a method with the same name as the inner IList object named List. 
In spite of its simplicity, this solution isn’t exactly concise: a real-world class that exposes com-
mon methods such as Sort, Find, or Reverse (and all their overloads) would take about a hun-
dred lines. Worse, you’d need a distinct class for each different type of strong-typed collection 
in your application; for example, a DoubleCollection class to hold Double values, a DateTime-
Collection class for DateTime values, and so forth. Granted, you can easily generate these 
collections by taking a template and performing a search-and-replace operation, but for sure 
you can think of many other, more pleasant ways to spend your time.

All the code you put in the IntegerCollection class makes the application more robust and 
slightly less verbose because any attempt to store a noninteger value in the collection is 
trapped at compile time. Also, reading an element doesn’t require a CType operator any 
longer:

' This is the only statement that must be changed from the previous example. 

Dim col As New IntegerCollection 

… 

' Reading an element doesn't require any conversion operator. 

Dim element As Integer = col(0) 

' Adding anything but an integer raises a compile-time error. 

col.Add("abc") ' *** This statement doesn't compile.

However, the IntegerCollection type doesn’t resolve the problem related to performance 
because integer values are still boxed when they are stored in the inner collection. In fact, this 
approach makes performance slightly worse because each call to a method in the IntegerCol-
lection class must be routed to the method of the inner List collection.

The Generics-Based Solution

The .NET Framework comes with a new namespace named System.Collections.Generic, 
which contains several generic collections that can be specialized to contain only values of a 
given type. For example, see how you can define a collection containing only integer values by 
means of the new List type:

' This collection will contain only integer numbers. 

Dim col As New List(Of Integer) 

C11621837.fm  Page 399  Saturday, December 10, 2005  7:17 PM



400 Part II: Object-Oriented Programming

col.Add(11): col.Add(13): col.Add(19) 

For Each n As Integer in col 

Console.WriteLine(n) 

Next 

' Reading an element doesn't require any conversion operator. 

Dim element As Integer = col(0)

The new Of keyword specifies that the generic List type must be specialized to work with ele-
ments of Integer type, and only with that type of element. In fact, assuming that Option Strict 
is On, any attempt to add elements of a different type raises a compile-time error:

' Adding a string causes a compile-time error. 

col.Add("abc") ' *** This statement doesn't compile.

Even if this isn’t apparent when looking at the code, the solution based on generics also solves 
the performance problem because the List(Of Integer) collection stores its elements in Integer 
slots—in general, in the variables typed after the type specified by the Of clause—and therefore 
no boxing occurs anywhere.

You can easily prove this point by compiling the following sample code:

Dim al As New ArrayList 

al.Add(9) 

Dim list As New List(Of Integer) 

list.Add(9)

Here’s the corresponding IL code generated by the Visual Basic compiler:

//000004: Dim al As New ArrayList 

IL_0001: newobj instance void 

 

[mscorlib]System.Collections.ArrayList::.ctor() 

IL_0006: stloc.0 

//000005: al.Add(9) 

IL_0007: ldloc.0 

IL_0008: ldc.i4.s 9 

IL_000a: box [mscorlib]System.Int32 

IL_000f: callvirt instance int32  

[mscorlib]System.Collections.ArrayList::Add(object) 

IL_0014: pop 

 

//000006: Dim list As New List(Of Integer) 

IL_0015: newobj instance void class  

[mscorlib]System.Collections.Generic.List`1<int32>::.ctor() 

IL_001a: stloc.1 

//000007: list.Add(9) 

IL_001b: ldloc.1 

IL_001c: ldc.i4.s 9 

IL_001e: callvirt instance void class  

[mscorlib]System.Collections.Generic.List`1<int32>::Add(!0)

It isn’t essential that you understand the meaning of each IL statement here; the key point is 
that it requires a box IL opcode (in bold type) to prepare the integer value for being passed to 

C11621837.fm  Page 400  Saturday, December 10, 2005  7:17 PM



Chapter 11: Generics 401

the Add method of the ArrayList object, whereas no such opcode is used when calling the Add 
method of the List(Of Integer) object.

Because of the missing box operation, adding value-typed items to a generic collection is 
remarkably faster than is adding the same items to a nongeneric collection, even though the 
difference can go unnoticed until the repeated box operations cause a garbage collection. In 
an informal benchmark, adding one million integers to a List object is about six times faster 
than adding them to an ArrayList is.

You can extract elements from a generic collection and assign them to a strong-typed variable 
without having to convert them and without causing an unbox operation. This additional 
optimization can make your read operations faster by a factor of about 30 percent. This speed 
improvement isn’t as impressive as the one that results when you add items, but on the other 
hand, it occurs even with small collections that don’t stress the garbage collector. 

The .NET Framework exposes many generic types in addition to the List object just shown: 
the Dictionary(Of K,V) and SortedDictionary(Of K,V) generic collections enable you to create 
strong-typed hash tables; the Stack(Of T), Queue(Of T), and LinkedList(Of T) are useful for 
creating more robust and efficient versions of other common data structures. I cover these 
and other generic types later in this chapter and in Chapter 13.

Another important note: the type argument you pass when defining a generic instance can be 
any .NET type, including another generic or nongeneric collection. You can even pass a type 
that represents an array:

' A collection of generic dictionaries 

Dim list As New List(Of Dictionary(Of String, Integer)) 

' A collection of arrays of Integers 

Dim arrays As New List(Of Integer())  

' Add an array to the collection. 

Dim arr() As Integer = {1, 3, 5, 7, 9} 

arrays.Add(arr) 

' Display the second element of the first array, and then modify it. 

Console.WriteLine(arrays(0)(1)) ' => 3 

arrays(0)(1) = 999

Authoring Generic Types
In addition to using generic types defined in the .NET Framework, Microsoft Visual Basic 
2005 also enables you to create your own generic types. As you’ll see in a moment, the syntax 
for doing so is quite intuitive, even though you must account for some nonobvious details.

Generic Parameters

Let’s begin with a very simple task: create a strong-typed collection that doesn’t allow you to 
remove or modify an element after you’ve added it to the collection. The .NET Framework 
exposes many collection-like types, but none of them has exactly these features. The simplest 

C11621837.fm  Page 401  Saturday, December 10, 2005  7:17 PM



402 Part II: Object-Oriented Programming

thing to do is author a generic type named ReadOnlyList and reuse it to store elements of any 
sort. For simplicity’s sake, the ReadOnlyList type uses a private array whose max number of 
elements must be defined when you instantiate a new collection:

Public Class ReadOnlyList(Of T) 

Dim values() As T  

' The constructor takes the maximum number of elements. 

Public Sub New(ByVal elementCount As Integer) 

ReDim values(elementCount - 1) 

End Sub 

 

' The Count read-only property 

Private m_Count As Integer 

 

Public ReadOnly Property Count() As Integer 

Get 

Return m_Count 

End Get 

End Property 

 

' Add a new element to the collection; error if too many elements. 

Public Sub Add(ByVal value As T) 

values(m_Count) = value 

m_Count += 1 

End Sub 

 

' Return the Nth element; error if index is out of range. 

Default Public ReadOnly Property Item(ByVal index As Integer) As T 

Get 

If index < 0 OrElse index >= m_Count Then _  

Throw New ArgumentException("Index out of range") 

Return values(index) 

End Get 

End Property 

End Class

The key point in the preceding code is the declaration of the generic parameter in the first line 
by means of the Of keyword:

Public Class ReadOnlyList(Of T)

Once you have defined the generic parameter, you can reuse it anywhere in the class (as well 
as in any nested class) as if it were a regular type name. For example, the generic parameter T 
appears in the declaration of the inner values array and in the signature of the Add and Item 
members (in bold type). You can use the ReadOnlyList generic type as you’d use the List 
generic type, except that you must provide the maximum number of elements and you can’t 
remove or modify any element after you’ve added it:

' This read-only list can contain up to 1,000 integer values. 

Dim roList As New ReadOnlyList(Of Integer)(1000) 

roList.Add(123) 

Console.WriteLine(roList(0)) ' => 123 

' *** Next statement causes a compilation error: "Property Item is readonly." 

roList(0) = 234

C11621837.fm  Page 402  Saturday, December 10, 2005  7:17 PM



Chapter 11: Generics 403

When you work with generics, you need a way to distinguish a generic type such as List(Of T), 
which contains one or more type parameters, from a generic type such as List(Of Integer), where 
the type parameter has been replaced (or bound) to a specific type. A type of the former kind 
is known as generic type definition, open generic type, or unbound generic type, whereas a type of 
the latter type is known as bound generic type.

Interestingly, the T generic parameter can be reused to define or instantiate other generic 
types. For example, you can simplify the ReadOnlyList class by using a private List(Of T) 
object instead of an array; incidentally, this change relieves you of the requirement of passing 
the maximum number of elements to the constructor:

Public Class ReadOnlyList2(Of T) 

Dim values As List(Of T) 

 

' The constructor can take the maximum number of elements. (Default value is 16.) 

Public Sub New(Optional ByVal elementCount As Integer = 16) 

values = New List(Of T)(elementCount) 

End Sub 

 

' The Count read-only property 

Public ReadOnly Property Count() As Integer 

Get 

Return values.Count 

End Get 

End Property 

 

' Add a new element to the collection. 

Public Sub Add(ByVal value As T) 

values.Add(value) 

End Sub 

 

' Return the Nth element; error if index is out of range. 

Default Public ReadOnly Property Item(ByVal index As Integer) As T 

Get 

Return values(index) 

End Get 

End Property 

End Class

The first problem you face when working with generics is that you can’t really make any 
assumption on the type that will be passed to the generic type parameter. For example, the 
Add method receives an element of the generic type T, but it can’t invoke any method on this 
element except those inherited from System.Object. For the same reason, you can’t use any 
operator on an element of type T, including math and comparison operators, the Is operator, 
and the IsNot operator. For example, the simplest way to test a value against Nothing is by 
means of the Object.Equals static method:

Public Sub Add(ByVal value As T) 

' Add only nonnull elements to the collection.  

If Not Object.Equals(value, Nothing) Then values.Add(value) 

End Sub

C11621837.fm  Page 403  Saturday, December 10, 2005  7:17 PM



404 Part II: Object-Oriented Programming

(Notice that value types can’t be equal to Nothing; therefore, the Then statement is always 
executed if you pass a value type.) Because of these limitations and the inability to invoke 
methods in the type referenced by the parameter T, generics are best used as containers for 
objects that don’t have an active role. Later in this chapter, you’ll learn how you can use 
constraints to be able to invoke members on contained objects.

Multiple Generic Parameters

A generic class can also take multiple generic parameters. For example, consider the following 
Relation type, a simple class that enables you to create a one-to-one relation between two 
instances of a given type:

Public Class Relation(Of T1, T2) 

Public ReadOnly Object1 As T1 

Public ReadOnly Object2 As T2 

 

Public Sub New(ByVal obj1 As T1, ByVal obj2 As T2) 

Me.Object1 = obj1 

Me.Object2 = obj2 

End Sub 

End Class

In spite of its simplicity, the Relation class can be quite useful to expand your object hierarchy 
with new features. For example, let’s say that you have defined a Person class (which holds 
personal data about an individual) and a Company type (which holds information about a 
company). The Relation type enables you to indicate for which company a given person 
works:

Dim ca As New Company("Code Architects") 

Dim john As New Person("John", "Evans") 

Dim relJohnCa As New Relation(Of Person, Company)(john, ca) 

Dim ann As New Person("Ann", "Beebe") 

Dim relAnnCa As New Relation(Of Person, Company)(ann, ca)

In a real program, you typically deal with many persons and many companies, so you’d be bet-
ter off creating a strong-typed list that can contain Relation objects. This can be achieved by 
using nested Of keywords:

Dim relations As New List(Of Relation(Of Person, Company)) 

relations.Add(relJohnCa) 

relations.Add(relAnnCa)

The ability to nest Of keywords is a very powerful technique that extends the power of 
generics remarkably. For example, the following code extracts all the persons who work for a 
given company:

Function GetEmployees(ByVal relations As List(Of Relation(Of Person, Company)), _ 

ByVal company As Company) As List(Of Person) 

Dim result As New List(Of Person) 

For Each rel As Relation(Of Person, Company) In relations 

C11621837.fm  Page 404  Saturday, December 10, 2005  7:17 PM



Chapter 11: Generics 405

If rel.Object2 Is company Then result.Add(rel.Object1) 

Next 

Return result 

End Function

You might continue the previous example by extracting all the employees of the Code 
Architects company, as follows:

For Each p As Person In GetEmployees(relations, ca) 

Console.WriteLine(p.FirstName & " " & p.LastName) 

Next

As you can see, using nested Of keywords can make your code quite contorted and nearly 
unreadable. The following section shows how you can simplify things.

Generic Methods

You can also use the Of keyword in the definition of a method. Consider the following 
procedure, which you can place inside a module:

' Exchange two arguments passed by address. 

Public Sub Swap(Of T)(ByRef x As T, ByRef y As T) 

Dim tmp As T = x 

x = y 

y = tmp 

End Sub

You can call the Swap method by passing two variables of the same type:

Dim n1 As Integer = 123 

Dim n2 As Integer = 456 

Swap(Of Integer)(n1, n2) 

Console.WriteLine("n1={0}, n2={1}", n1, n2) ' => n1=456, n2=123

It’s remarkable that in most cases the Visual Basic compiler doesn’t even require the Of 
keyword in the method invocation:

' The following statement works correctly. 

Swap(n1, n2)

At times you do need to specify the Of clause when invoking a generic method. Consider the 
following definition:

Sub DoSomething(Of T)(ByVal x As T, ByVal y As T) 

… 

End Sub

The following client code works correctly even if no Of keyword is used because the compiler 
can determine the generic parameter to be passed behind the scenes by looking at the type of 
the first argument passed to the method:

DoSomething(123, 456) ' Same as DoSomething(Of Integer) 

DoSomething(123.56, 456.78) ' Same as DoSomething(Of Double)

C11621837.fm  Page 405  Saturday, December 10, 2005  7:17 PM



406 Part II: Object-Oriented Programming

However, you have a problem when the two arguments have a different type. For example, 
this code:

Dim l As Long = 456 

Dim n As Integer = 123 

DoSomething(l, n)

fails to compile with the following error message:

Type argument inference failed for type parameter 'T' of 'Public Sub DoSomething(Of T)

(x As T, y As T)'. Type argument inferred from the argument passed to parameter 'y'

conflicts with the type argument inferred from the argument passed to parameter 'x'.

This error message is a bit surprising because if the compiler looks at the first value passed 
to the method and infers that type T stands for Long, it should be able to automatically con-
vert the second argument from Integer to Long. However, it is evident that in this case the 
Visual Basic compiler isn’t able to perform even a widening conversion automatically.

You can get rid of the compilation error in two ways: either by manually converting the second 
argument to the same type as the first one or by specifying the Of clause in the method call:

' Both these statements work correctly. 

DoSomething(l, CLng(n)) 

DoSomething(Of Long)(l, n)

Finally notice that only generic methods are supported; there is no such thing as a generic 
property, field, or event. In other words, Visual Basic refuses to compile this code:

Property Value(Of T)() As T 

… 

End Property

However, you can have a property that reuses a generic parameter defined in the enclosing 
class:

Public Class Item(Of T) 

Property Value() As T 

… 

End Property 

End Class

Setting the Default Value

One interesting detail about Visual Basic generics is that you can deal with reference types 
and value types in the same way. To see what I mean, let’s extend the implementation of 
the ReadOnlyList class with the ability to clear all the elements that are currently stored 
in the collection:

' (Inside the ReadOnlyList class…) 

Public Sub Reset() 

' Reset all existing elements to the type's default value. 

C11621837.fm  Page 406  Saturday, December 10, 2005  7:17 PM



Chapter 11: Generics 407

For i As Integer = 0 To Me.Count - 1 

values(i) = Nothing 

Next 

End Sub

The purpose of the Reset method is to assign the type’s default value to each element; if the 
ReadOnlyList class stores strings or other kinds of objects, the default value is Nothing. 
However, if the ReadOnlyList class stores numbers or other value types, assigning the Noth-
ing value should throw an exception at run time because you can’t store Nothing in a value 
type variable, right?

Wrong. When Nothing is assigned to a variable typed after a generic parameter—as is the case 
of the values array in preceding code—the assignment is guaranteed not to fail even if the 
generic argument designates a value type. In this case, the default value for that type—that is, 
zero for numeric types, a null globally unique identifier (GUID) for the System.Guid type, and 
so forth—is assigned instead.

Even if it isn’t immediately apparent, this feature enables you to test whether a given element 
matches the default value for the type. Here’s an example:

Function IsDefaultValue(Of T)(ByVal value As T) As Boolean 

Dim defValue As T = Nothing 

Return Object.Equals(value, defValue) 

End Function

Generic Interfaces

You can use generics with classes, structures, interfaces, and delegates (but not with modules 
and enum types). Generic structures work exactly the same way as generic classes do, but 
generic interfaces need some additional clarifications. The following code defines a generic 
interface and a class that implements that interface:

Interface IAdder(Of T) 

Function Add(ByVal n1 As T, ByVal n2 As T) As T 

End Interface 

 

Class Adder 

Implements IAdder(Of Integer) 

 

Public Function Add(ByVal n1 As Integer, ByVal n2 As Integer) As Integer _ 

Implements IAdder(Of Integer).Add 

Return n1 + n2 

End Function 

End Class

It is legal to implement multiple versions of the same generic interface, as in this code:

Class Adder 

Implements IAdder(Of Integer), IAdder(Of Double) 

 

Public Function Add(ByVal n1 As Integer, ByVal n2 As Integer) As Integer _ 

Implements IAdder(Of Integer).Add 

C11621837.fm  Page 407  Saturday, December 10, 2005  7:17 PM



408 Part II: Object-Oriented Programming

Return n1 + n2 

End Function 

 

Public Function Add(ByVal n1 As Double, ByVal n2 As Double) As Double _ 

Implements IAdder(Of Double).Add 

Return n1 + n2 

End Function 

End Class

The most important difference between a standard interface and a generic interface is that the 
latter can avoid a box operation when method arguments are of a value type. For example, 
before generics were introduced the only way you could define a universal IAdder interface 
was to use Object arguments, as in the following:

Interface IAdder  

Function Add(ByVal n1 As Object, ByVal n2 As Object) As Object 

End Interface

Implementing such an interface in a class would require that both the arguments and the 
return value—all of which are numbers, and therefore value types—be boxed and unboxed. 
By comparison, no boxing occurs when you implement the IAdder(Of T) interface if T is a 
value type.

The .NET Framework defines several generic interfaces, most of which are the generic version 
of weakly typed interfaces. These are the most important ones:

■ IComparable(Of T), the strong-typed version of IComparable

■ IComparer(Of T), the strong-typed version of IComparer

■ IEquatable(Of T), which exposes an Equals method that takes an argument of a specific 
type

■ IEnumerable(Of T) and IEnumerator(Of T), which allow a class to support For Each 
loops

■ ICollection(Of T), which represents a collection of elements of type T

■ IList(Of T), which represents a series of elements of type T

■ IDictionary(Of K, V), which represents a dictionary of elements of type V indexed by 
keys of type K.

If the type that implements the interface is itself a generic type, the generic parameter can 
appear in the Of clause of the Implements statement, as in the following code:

Public Class TestComparer(Of T) 

Implements IComparer(Of T) 

Public Function Compare(ByVal x As T, ByVal y As T) As Integer _ 

Implements IComparer(Of T).Compare 

… 

End Function 

End Class

C11621837.fm  Page 408  Saturday, December 10, 2005  7:17 PM



Chapter 11: Generics 409

In practice, however, implementing generic interfaces in this way is difficult and sometimes 
impossible. For example, there is no simple way to implement correctly the Compare method 
in the previous code snippet because the code inside the method can’t make any assumption 
about how two elements of type T can be compared to each other and can’t use comparison 
operators with them. (You can sometimes work around this limitation by enforcing a con-
straint on the generic parameter, as you’ll learn in a following section.)

Interestingly, many primitive .NET types have been expanded to implement the IEquatable(Of T) 
and IComparable(Of T) interfaces. For example, you can now invoke the strong-typed versions 
of the Equals and IComparable interfaces for all numeric types:

Sub TestInteger(ByVal value As Integer) 

' These statements box their value in .NET Framework 1.1, but not in .NET Framework 2.0. 

If value.Equals(0) Then Console.WriteLine("It's zero") 

If value.CompareTo(0) > 0 Then Console.WriteLine("It's positive") 

End Sub

You can’t use the generic parameter as a direct argument of the Implements keyword. In other 
words, the following statements don’t compile:

Public Class TestClass(Of T) 

Implements T 

… 

End Class

Note A few generic interfaces inherit from the corresponding nongeneric one. For example, 
IEnumerable(Of T) inherits from IEnumerable; therefore, a class that implements the generic 
interface must implement both the IEnumerable(Of T).GetEnumerator method and the IEnu-
merator.GetEnumerator. Similarly, the IEnumerator(Of T) interface inherits from IEnumerator; 
therefore, a class that implements IEnumerator(Of T) must expose all three members of IEnu-
merator plus the strongly typed version of the Current property. (For more information about 
the IEnumerator interface, read Chapter 10, “Interfaces.”)

Generics and Overloading

You can define generic types that have the same name but different numbers of generic param-
eters. For example, the following classes can coexist in the same namespace:

Public Class MyType 

… 

End Class 

 

Public Class MyType(Of T) 

… 

End Class 

 

Public Class MyType(Of T, K) 

… 

End Class

C11621837.fm  Page 409  Saturday, December 10, 2005  7:17 PM



410 Part II: Object-Oriented Programming

This feature is similar to method overloading in the sense that the compiler chooses the type 
with the number of generic parameters that matches the number of generic arguments passed 
by the calling code:

Dim t1 As MyType ' An instance of the first class 

Dim t2 As MyType(Of Long) ' An instance of the second class 

Dim t3 As MyType(Of Long, Double) ' An instance of the third class

Similarly, you can define multiple methods with the same name and different sets of generic 
parameters. In this case, however, the rules are slightly more complicated and you must be 
aware of a few subtleties. Let’s consider the following methods:

Sub DoTask(Of T, P)(ByVal x As T, ByVal y As P) 

Console.WriteLine("First version") 

End Sub 

 

Sub DoTask(Of T)(ByVal x As T, ByVal y As String) 

Console.WriteLine("Second version") 

End Sub 

 

Sub DoTask(Of T)(ByVal x As T, ByVal y As T) 

Console.WriteLine("Third version") 

End Sub

In most cases, the Visual Basic compiler is smart enough to generate code that invokes the 
most specific version, even if you omit the Of clause in the method call:

DoTask(123, 456.78) ' Calls DoTask(Of Integer, Double) 

DoTask(123, "abc") ' Calls DoTask(Of Integer, String)

However, if you attempt to pass two arguments of the same type, for example, two integers, the 
compiler complains and explains that overload resolution failed because no method is spe-
cific to the arguments being passed:

' *** Next statement raises a compilation error. 

DoTask(123, 123)

To solve the problem you must give the compiler a hint about which version you want to be 
invoked:

' Next statement compiles correctly and invokes the third version of the method. 

DoTask(Of Integer)(123, 123)

Generics and Inheritance

Earlier in this chapter, I stated that you can use a generic parameter anywhere in a class, as if 
it were a regular type name. Well, that description wasn’t exactly accurate because a few 
exceptions exist:

■ You can’t use a generic parameter in the Inherits clause; in other words, you can’t inherit 
from a type passed as a generic parameter.

C11621837.fm  Page 410  Saturday, December 10, 2005  7:17 PM



Chapter 11: Generics 411

■ You can’t use a generic parameter to reference an interface in the Implements clause, as 
I explain at the end of the section titled “Generic Interfaces” earlier in this chapter.

■ You can’t use a generic parameter in an attribute declaration.

■ You can’t use a generic parameter in a Declare statement or a method that is marked 
with the DllImport attribute, that is, in a method that runs unmanaged code.

The first limitation implies that you can’t inherit a type from another type defined by means of 
a generic parameter:

' *** The following code doesn't compile. 

Public Class TestClass(Of T) 

Inherits T 

… 

End Class

Nothing prevents you, however, from using a generic type in the Inherits clause, which is in 
fact a rather common case. For example, the following two classes are based on the Relation 
type defined in an earlier section:

Public Class PersonCompanyRelation 

Inherits Relation(Of Person, Company) 

 

Public Sub New(ByVal person As Person, ByVal company As Company) 

MyBase.New(person, company) 

End Sub 

End Class 

 

Public Class PersonCompanyRelationList 

Inherits List(Of PersonCompanyRelation) 

End Class

Thanks to these two classes, the client code that puts Person and Company objects in relation 
to each other can be simplified as follows:

Dim ca As New Company("Code Architects") 

Dim john As New Person("John", "Evans") 

Dim ann As New Person("Ann", "Beebe") 

 

Dim relations As New PersonCompanyRelationList 

Dim relJohnCa As New PersonCompanyRelation(john, ca) 

relations.Add(relJohnCa) 

relations.Add(New PersonCompanyRelation(ann, ca))

The GetEmployees method has a simpler and more readable declaration as well:

Function GetEmployees(ByVal relations As PersonCompanyRelationList, _ 

ByVal company As Company) As List(Of Person) 

Dim result As New List(Of Person) 

For Each rel As Relation(Of Person, Company) In relations 

If rel.Object2 Is company Then result.Add(rel.Object1) 

Next 

Return result 

End Function

C11621837.fm  Page 411  Saturday, December 10, 2005  7:17 PM



412 Part II: Object-Oriented Programming

The practice of defining and using a standard class that inherits from and wraps a generic type 
has several advantages:

■ The structure and the syntax of client code are simpler.

■ The client code can be written even in .NET languages that don’t support generics, or 
even in unmanaged code.

Generics are fully CLS-compliant; therefore, all major .NET languages support them and you 
can freely expose them as parameters or return values of public methods. Even so, however, 
you might decide not to expose a generic type to the outside of your assembly to keep it fully 
interoperable with all .NET languages as well as with unmanaged clients.

Generics and the TypeOf . . . Is Operator

In general, a bound generic type can be used whenever you can use a regular type, as in this 
code:

If TypeOf obj Is List(Of String) Then 

Dim list As List(Of String) = DirectCast(obj, List(Of String)) 

End If

This rule holds true only for bound generic types, which represent real types, and isn’t valid for 
open generic types, which represent a type definition rather than a real type. For example, the 
following code isn’t valid (unless it appears inside a generic type that takes the T parameter):

' *** This code causes the following compile error: Type T is not defined. 

If TypeOf obj Is List(Of T) Then 

' obj is an open list type, such as List(Of Integer) or List(Of String). 

End If

The previous test is rarely useful, because—even if it were a valid Visual Basic statement—you 
couldn’t cast an object instance to a generic List(Of T) variable. As a matter of fact, you can’t 
define such a variable:

' *** This statement causes two compile errors: Type T is not defined. 

Dim list as List(Of T) = DirectCast(obj, List(Of T))

Let’s see which options you have. If you simply must determine whether an object is an 
instance of a bound generic type, you can use this code:

If obj IsNot Nothing AndAlso obj.GetType().IsGenericType Then 

' obj is an instance of a generic type. 

End If

However, if you need to check whether an object is an instance of a generic bound type that 
derives from a given open generic definition, such as a type of the form List(Of T), you must use 
a different approach, one based on reflection. The FullName of a generic type definition consists of 
the complete name of the generic class, followed by an inverse quote character, and then the num-
ber of type parameters. For example, the full name of the List(Of T) generic type definition is this:

System.Collections.Generic.List`1

C11621837.fm  Page 412  Saturday, December 10, 2005  7:17 PM



Chapter 11: Generics 413

The FullName of a bound generic type is obtained by concatenating the complete name of the 
type arguments (enclosed between square brackets) to the previous string. For example, the 
full name of the List(Of Integer) type is

System.Collections.Generic.List`1[[System.Int32, mscorlib, Version=2.0.0.0,  

Culture=neutral, PublicKeyToken=b77a5c561934e089]]

Armed with this knowledge, you can test whether an object instance is a bound generic type 
of a List(Of T) using this code:

If obj IsNot Nothing AndAlso obj.GetType().FullName.StartsWith( _ 

"System.Collections.Generic.List`1") Then 

' obj is a generic type of the form List(Of T). 

End If

However, notice that the previous test isn’t perfectly equivalent to the TypeOf operator, which 
also tests whether the first argument is an instance of any type derived from the type specified 
in the second argument. If you must perform this sort of test, you must adopt a technique 
based on reflection:

' Test whether obj is a List(Of T) or derives from a List(Of T) type. 

If obj IsNot Nothing Then 

Dim type As Type = obj.GetType() 

Do 

If type.FullName.StartsWith("System.Collections.Generic.List`1") Then 

Console.WriteLine("TypeOf obj Is List(Of T) is true!")  

Exit Do 

End If 

type = type.BaseType 

Loop Until type Is Nothing 

End If

You can read more about reflection, the GetType operator, and the methods of the System.Type 
class in Chapter 18, “Reflection.”

Testing and Converting Generic Values

A common problem with generics is that no evident way exists to convert a generic value into 
a more specific type. For example, consider this code:

Sub TestMethod(Of T)(ByVal value As T) 

If TypeOf value Is Integer Then ' *** Compilation error 

Dim n As Integer = CInt(value) ' *** Compilation error 

… 

End If 

End Sub

The comments highlight the two statements that cause a compilation error. The first error 
occurs because the first argument of TypeOf must be a reference type, but the compiler has no 
clue about the generic T type; the second error occurs because the compiler knows nothing 
about the T type and can’t guarantee that the CInt operator can convert an instance of T into 
an integer. 

C11621837.fm  Page 413  Saturday, December 10, 2005  7:17 PM



414 Part II: Object-Oriented Programming

In cases like this, the simplest solution is to convert the argument to Object and then deal 
with it as you would normally:

Sub CheckArguments(Of T)(ByVal value As T) 

Dim obj As Object = CObj(value) 

If TypeOf obj Is Integer Then 

Dim n As Integer = CInt(obj) 

… 

End If 

End Sub

The problem with this approach is that it causes the value to be boxed if T is a value type. 
If you don’t need to extract its value and want simply to test its type, you can save a box oper-
ation by means of a reflection-based technique:

If value IsNot Nothing AndAlso value.GetType() Is GetType(Integer) Then 

… 

End If

Generic Constraints 

Consider the following generic method, which returns the highest value among its arguments:

Public Function Max(Of T)(ByVal ParamArray values() As T) As T 

Dim result As T = values(0) 

For i As Integer = 1 To UBound(values) 

' *** The next statement causes the following compilation error: 

' "Operator '>' is not defined for types 'T' and 'T'."  

If values(i) > result Then result = values(i) 

Next 

Return result 

End Function

As the remark in the preceding code indicates, the greater than sign (>) causes a compilation 
error because the compiler can’t be sure that client code calls the method only with arguments 
that support this operator. This problem occurs quite frequently when you are working with 
generics, but you can work around it by enforcing a constraint for the T type. For example, you 
can require that the method be called only with types that support the IComparable interface:

Public Function Max(Of T As IComparable)(ByVal ParamArray values() As T) As T 

… 

End Function

Because T surely exposes the IComparable interface, the code in the method can safely invoke 
the CompareTo method to calculate the highest value in the array:

Public Function Max(Of T As IComparable)(ByVal ParamArray values() As T) As T 

Dim result As T = values(0) 

For i As Integer = 1 To UBound(values) 

If result.CompareTo(values(i)) < 0 Then result = values(i) 

Next 

Return result 

End Function

C11621837.fm  Page 414  Saturday, December 10, 2005  7:17 PM



Chapter 11: Generics 415

Here’s a piece of client code that uses the Max function:

' No need to specify the Of clause in calling the method. 

Console.WriteLine(Max(12, 23, 6, -1)) ' => 23

Visual Basic 2005 supports five types of constraints:

■ Interface constraint The type argument must implement the specified interface.

■ Inheritance constraint The type argument must derive from the specified base class.

■ Class constraint The type argument must be a reference type.

■ Structure constraint The type argument must be a value type.

■ New constraint The type argument must expose a public parameterless (default) 
constructor.  

Notice that you can’t define a constraint specifying that a type must expose a constructor with 
a given signature; the New constraint ensures that one of the public constructors of the type 
has no arguments.

You can read more about these constraint types in the following sections. 

The Interface Constraint

This kind of constraint is often used with the IComparable interface, as in the code example 
just shown. For instance, here’s an interesting recursive method that returns the median value 
in a list. (The median of a list of N elements is the value that is greater than N/2 elements and 
less than the remaining N/2 elements.)

Function MedianValue(Of T As IComparable)(ByVal list As List(Of T), _ 

Optional ByVal position As Integer = -1) As T 

' Provide a default value for second argument. 

If position < 0 Then position = list.Count \ 2 

 

' If the list has just one element, we've found its median. 

Dim guess As T = list(0) 

If list.Count = 1 Then Return guess 

' This list will contain values lower and higher than the current guess. 

Dim lowerList As New List(Of T) 

Dim higherList As New List(Of T) 

 

For i As Integer = 1 To list.Count - 1 

Dim value As T = list(i) 

If guess.CompareTo(value) <= 0 Then 

' The value is higher than or equal to the current guess. 

higherList.Add(value) 

Else 

' The value is lower than the current guess. 

lowerList.Add(value) 

End If 

Next 

 

C11621837.fm  Page 415  Saturday, December 10, 2005  7:17 PM



416 Part II: Object-Oriented Programming

If lowerList.Count > position Then 

' The median value must be in the lower-than list. 

Return MedianValue(lowerList, position) 

ElseIf lowerList.Count < position Then 

' The median value must be in the higher-than list. 

Return MedianValue(higherList, position - lowerList.Count - 1) 

Else 

' The guess is correct. 

Return guess 

End If 

End Function

Of course, you can evaluate the median value of an array by sorting the array and then 
picking the element at index N/2, but MedianValue is typically faster because it saves you the 
sort step.

You can retrieve other interesting values in a list by passing a second argument to the Median-
Value method. For example, by passing the value 0, the method returns the lowest value in 
the list; by passing the value 1, the method returns the second lowest value in the list; by 
passing the value N – 1, the method returns the highest value in a list of N elements; 
by passing the value N – 2, the method returns the second highest value in the list, and 
so forth.

You can specify a generic interface as a constraint. For example, you can improve the Median-
Value as follows:

Function MedianValue(Of T As IComparable(Of T))(ByVal list As List(Of T), _ 

Optional ByVal position As Integer = -1) As T 

… 

End Function

The advantage of using a generic interface instead of a weakly typed interface is that no boxing 
occurs when the new version of the MedianValue method invokes the CompareTo method of 
the interface:

' In the new version of MedianValue, this statement causes no boxing. 

If guess.CompareTo(value) <= 0 Then

All numeric types in the .NET Framework implement the IComparable(Of T) and IEquat-
able(Of T) interfaces; thus, the new version of the MedianValue method can work with all the 
integer and floating-point numeric types. If you define a new numeric data type, it is strongly 
recommended that you implement the IComparable(Of T) and IEquatable(Of T) generic 
interfaces.

You can use the interface constraint with any interface, not just IComparable. For example, a 
constraint for the ISerializable interface ensures that the generic type or method can be used 
only with types that can be serialized and deserialized from a file or a database field. (Read 
Chapter 21, “Serialization,” for more information about the ISerializable interface.) In the 
remainder of this chapter, I provide other examples of interface constraints.

C11621837.fm  Page 416  Saturday, December 10, 2005  7:17 PM



Chapter 11: Generics 417

The Inheritance Constraint

The inheritance constraint tells the Visual Basic compiler that a generic argument can 
only be a type that derives from the specified class. The syntax is similar to the interface 
constraint:

' This generic class can be used only with types that derive 

' from System.Windows.Forms.Control. 

Public Class ControlCollection(Of T As System.Windows.Forms.Control) 

Inherits List(Of T) 

… 

End Class

Because of the inheritance constraint, you can use the ControlCollection class to create a 
collection of Button or TextBox controls, but not Person or Company objects. In addition to 
improved robustness, the inheritance constraint gives you the ability to invoke any Public 
member of the type specified by the constraint. For example, the code in the ControlCollection 
class can safely access members of the Control type, such as the Text and ForeColor proper-
ties. Unfortunately, the presence of the inheritance constraint doesn’t suffice to enable you to 
invoke the constructor of the class because classes that derive from the same base type can 
define a different set of constructors and even have no constructors at all. (See the section 
titled “The New Constraint” later in this chapter for more details.)

A few generics defined in the .NET Framework use the inheritance constraint. For example, 
the System.EventHandler(Of T) generic type is a delegate that can be used to define an event 
and mandates that the T type inherits from System.EventArgs. If EventHandler(Of T) were 
defined in Visual Basic, it would look like this:

Public Delegate Sub EventHandler(Of T As EventArgs)(ByVal sender As Object, ByVal e As T)

(You can see this type in action in the section titled “Generics and Events” later in this 
chapter.) There are a few restrictions for the type that follows the As clause in an inheritance 
constraint. For obvious reasons, the type can’t be sealed (NotInheritable in Visual Basic) and 
therefore it can’t be a structure. Also, you can’t use the System.Object, System.ValueType, or 
System.Delegate types or any delegate type.

The Class and Structure Constraints

A generic parameter can be followed by the As Class clause, to specify that the type parameter 
is a reference type, or by the As Structure clause, to indicate that the type parameter is a 
value type:

Public Class ObjectCollection(Of T As Class) 

… 

End Class 

 

Public Class ValueCollection(Of T As Structure) 

… 

End Class

C11621837.fm  Page 417  Saturday, December 10, 2005  7:17 PM



418 Part II: Object-Oriented Programming

Note In theory you might have two generic types with the same name that differ only by 
the Class or Structure constraint applied to their generic argument because the Visual Basic 
compiler should be able to use one or the other depending on whether the generic argument 
is a class or a structure. However, the compiler isn’t that smart, and the general rule still applies: 
a namespace can contain two generic types with the same name only if they take a different 
number of generic parameters.

The class constraint (but not the structure constraint) adds the ability to use the Is, IsNot, and 
TypeOf . . . Is operators. For example, if you apply this constraint to the type parameters of the 
Relation generic class, you can define a Contains method that uses the Is operator to check 
whether a given object is part of the relation:

Public Class Relation(Of T1 As Class, T2 As Class) 

Public ReadOnly Object1 As T1 

Public ReadOnly Object2 As T2 

 

Public Sub New(ByVal obj1 As T1, ByVal obj2 As T2) 

Me.Object1 = obj1 

Me.Object2 = obj2 

End Sub 

 

Public Function Contains(ByVal obj As Object) As Boolean 

Return Me.Object1 Is obj OrElse Me.Object2 Is obj 

End Function 

End Class

Notice that you must define the Contains method so that it takes a generic Object argument. 
In this particular case, it doesn’t really affect the quality of your code because the two objects 
passed to the constructor of the Relation class are reference types and therefore no box oper-
ation occurs when the Contains method is used appropriately (unless you mistakenly pass 
it a value-typed element that isn’t part of the relation). You might believe that you can enforce 
a more robust code by offering two overloads for the Contains method, as in the following:

Public Function Contains(ByVal obj As T1) As Boolean 

Return Me.Object1 Is obj  

End Function 

Public Function Contains(ByVal obj As T2) As Boolean 

Return Me.Object1 Is obj  

End Function

This code compiles correctly, but only as long as the client code never creates a Relation object 
whose two generic parameters are the same type. For example, the following code doesn’t 
compile:

Dim john As New Person("John", "Evans") 

Dim ann As New Person("Ann", "Beebe") 

Dim rel As New Relation(Of Person, Person)(john, ann) 

' Next statement raises the following compilation error: "Overload resolution 

' failed because no accessible 'Contains' is most specific for these arguments…" 

Dim found As Boolean = rel.Contains(john)

C11621837.fm  Page 418  Saturday, December 10, 2005  7:17 PM



Chapter 11: Generics 419

Here’s what has happened: when the compiler replaces both T1 and T2 with the Person type, 
it finds that two Contains methods are using the same signature. Oddly, the compiler should 
flag the statement that creates the Relation object as an error because the resulting bound 
generic class contains two overloaded methods with the same signature. Instead, the error is 
emitted only if the project actually contains a call to that method. Mysteries of .NET generics …

The New Constraint

The New constraint adds the requirement that the type passed as the generic parameter has 
a public parameterless constructor. This constraint allows you to create instances of the 
specified type, so you often use it in factory methods such as the following:

Public Function CreateObject(Of T As New) As T 

Return New T 

End Function

A better example shows how you can initialize an array of objects of a given type:

Public Function CreateArray(Of T As New)(ByVal numEls As Integer) As T() 

Dim values(numEls - 1) As T 

For i As Integer = 0 To numEls - 1 

values(i) = New T 

Next 

Return values 

End Function

The New constraint is often used in conjunction with other constraints, as explained in the 
followed section. 

Multiple Constraints

It is possible to enforce more than one constraint by enclosing the constraints in a pair of 
braces. This syntax is especially useful to combine the New constraint with the interface 
constraint or the inheritance constraint, or to enforce multiple interface constraints on the 
same generic parameter, as in this code:

Public Class Widget(Of T As {New, IComparable}, V As {IComparable, IConvertible}) 

… 

End Class

The following example uses a compound constraint to implement a generic type that behaves 
like a sortable array: 

Public Class SortableArray(Of T, C As {New, IComparer(Of T)}) 

Dim values() As T 

 

Public Sub New(ByVal highestIndex As Integer) 

ReDim values(highestIndex) 

End Sub 

 

Public Sub Sort() 

' Sort the array using the specified comparer object. 

C11621837.fm  Page 419  Saturday, December 10, 2005  7:17 PM



420 Part II: Object-Oriented Programming

Array.Sort(values, New C) 

End Sub 

 

Default Public Property Item(ByVal index As Integer) As T 

Get 

Return values(index) 

End Get 

Set(ByVal value As T) 

values(index) = value 

End Set 

End Property 

End Class

To see the SortableArray class in action you must define a suitable comparer class, which can 
be as simple as this one:

Public Class ReverseIntegerComparer 

Implements IComparer(Of Integer) 

 

Public Function Compare(ByVal x As Integer, ByVal y As Integer) As Integer _ 

Implements IComparer(Of Integer).Compare 

' Return -1 if x > y, +1 if x < y, 0 if x = y. 

Return Math.Sign(y - x) 

End Function 

End Class

Finally, you can define a SortableArray object that contains integers and that, when sorted, 
arranges elements in reverse order:

' A sortable array that can contain 11 elements 

Dim arr As New SortableArray(Of Integer, ReverseIntegerComparer)(10) 

arr(0) = 123 

… 

' Sort the array (in reverse order). 

arr.Sort()

Note You might wonder why the Compare method uses a Math.Sign function instead of a 
simpler call to the CompareTo method, exposed by the IComparable interface:

Return DirectCast(y, IComparable).CompareTo(x)

The reason is subtle and has to do with performance. The previous statement, in fact, causes 
two hidden box operations: first, the y variable is boxed when it is cast to the IComparable 
interface; second, the x Integer value is passed to an Object argument and therefore must be 
boxed as well. You can avoid the second box operation by casting to the IComparable(Of Inte-
ger) interface, as in this code:

Return DirectCast(y, IComparable(Of Integer)).CompareTo(x)

However, you can’t avoid the first box operation, caused by the DirectCast operator, which in 
turn is necessary because the CompareTo method is private and can be accessed only through 
the IComparable interface.

In this particular case you can improve performance by passing the y – x difference to the 
Math.Sign method; when you have no other solution but to use DirectCast to invoke a private 
interface member, you can’t avoid the extra box operation.

C11621837.fm  Page 420  Saturday, December 10, 2005  7:17 PM



Chapter 11: Generics 421

Checking a Constraint at Run Time

As sophisticated as it is, the constraint mechanism isn’t perfect. For example, it isn’t possible 
to request that a type passed as an argument implements either interface A or interface B (or 
both), or that it doesn’t implement an interface or inherit from a given base class, or that it is 
marked with a given attribute, or that it exposes a method or a constructor with a given name 
and signature. And you can’t check that at least one of the type arguments (but not necessarily 
all of them) implement a given interface. In cases like these, you can’t specify a standard 
constraint; instead, the best you can do is check the condition at run time.

Provided that you know how to test the condition, it’s easy to check the constraint in the 
generic type’s constructor, as in this case:

Public Class ClassWithRuntimeConstraint(Of T) 

Sub New() 

' Check that the T type implements either IDisposable or ICloneable. 

' (We need reflection to perform this test.) 

If Not GetType(IDisposable).IsAssignableFrom(GetType(T)) AndAlso _ 

Not GetType(ICloneable).IsAssignableFrom(GetType(T)) Then 

Throw New ArgumentException("Invalid type argument") 

End If 

' Continue here with the constructor… 

End Sub 

End Class

Although this approach works, it is less than optimal because the condition is checked each 
time an instance of the TestClass type is created. A better approach is to place the condition in 
the static constructor of the type, which is executed only once during the application’s lifetime:

' Check type constraint in the static type constructor. 

Shared Sub New() 

If Not GetType(IDisposable).IsAssignableFrom(GetType(T)) AndAlso _ 

Not GetType(ICloneable).IsAssignableFrom(GetType(T)) Then 

Throw New ArgumentException("Invalid type argument") 

End If 

End Sub

Advanced Topics
Generic types are new, powerful tools in the hands of expert developers. As with all power 
tools, it takes some time to master them. 

Nullable Types

Virtually all databases support the concept of nullable columns, namely, columns that can 
contain the special NULL value. Such a special value is often used as an alias for “unknown 
value” or “unassigned value.” The use of nullable columns tends to make database-oriented 
applications more complicated than they need to be. For example, you can’t move a value 
from a nullable numeric column into an Int32 or Double .NET variable without testing the 

C11621837.fm  Page 421  Saturday, December 10, 2005  7:17 PM



422 Part II: Object-Oriented Programming

value against the DBNull.Value special value. (The actual method or operation you must per-
form depends on the ADO.NET object you’re using.)

Microsoft .NET Framework version 2.0 introduces the concept of nullable types, that is, value 
types that can be assigned a special null value. Notice that only value types need to be treated 
in this way because reference types—such as strings and arrays—can use the Nothing value 
as an alias for the null state.

As you probably have already guessed by now, .NET nullable types are based on generics. For 
example, here’s how you can define a nullable Integer value:

' Declare an "unassigned" nullable value. 

Dim n As Nullable(Of Integer) 

' Assign it a value. 

n = 123 

' Reset it to the "unassigned" state. 

n = Nothing 

 

' You can declare and assign a nullable value in these two ways. 

Dim d1 As Nullable(Of Double) = 123.45 

Dim d2 As New Nullable(Of Double)(123.45)

The Nullable(Of T) generic type exposes two key properties, both of which are read-only. The 
HasValue property returns False if the element is in the unassigned state; the Value property 
returns the actual value if HasValue is True; otherwise, it throws an InvalidOperationException 
object:

If n.HasValue Then 

Console.WriteLine("Value is {0}.", n.Value) 

Else 

Console.WriteLine("No value has been assigned yet.") 

End If

The Nullable(Of T) type supports conversions to and from the T type. For example, you can 
convert a Double value to a Nullable(Of Double) value and vice versa, but the latter conversion 
fails if the nullable element has no value; therefore, it is considered a narrowing conversion 
and requires an explicit CType operator (or equivalent, such as CInt or CDbl):

Dim value As Double = 123.45 

' This conversion can never fail. 

Dim value2 As Nullable(Of Double) = value 

' The conversion in the opposite direction can fail; thus, it must be explicit. 

Dim value3 As Double = CDbl(value2)

Even though nullable types appear to be structures, they are given special treatment at the IL 
level and are often interchangeable with the underlying type they can contain. This special sup-
port becomes apparent in the way nullable values are boxed and unboxed. Consider this code:

' Create a null value and box it. 

Dim n As New Nullable(Of Integer) 

Dim obj As Object = n 

' obj contains something, yet next statement displays True. 

C11621837.fm  Page 422  Saturday, December 10, 2005  7:17 PM



Chapter 11: Generics 423

Console.WriteLine(obj Is Nothing) ' => True 

' You can unbox obj to a Nullable object or directly to an Integer value. 

' If the Nullable object has no value, the target variable is assigned the default value. 

Dim n2 As Integer = CInt(obj) ' n2 is assigned 0.

Even though you can use a nullable type in most of the places where the corresponding non-
nullable type can appear, you have to account for one weird limitation: you can’t pass a nul-
lable type as a generic argument that has a structure constraint. In other words, assume 
you have the following generic class:

Public Class TestClass(Of T As Structure) 

… 

End Class

If you now attempt to pass a nullable type to the T argument, as in this code:

Dim o As TestClass(Of Nullable(Of Integer))

you get the following error message:

'System.Nullable' does not satisfy the 'Structure' constraint for type  

parameter 'T'. Only non-nullable 'Structure' types are allowed.

Math and Comparison Operators

Unfortunately, the Nullable(Of T) generic type supports neither math nor comparison opera-
tors. In other words, you can’t directly add two nullable types. Instead, you must first convert 
them explicitly to the corresponding numeric type:

' This code assumes that d1 and d2 are Nullable(Of Double) elements. 

If d1.HasValue AndAlso d2.HasValue Then 

Dim sum As Double = d1.Value + d2.Value 

End If

Another solution for this issue is based on the GetValueOrDefault method, which returns either 
the current value (if HasValue is True) or the default value:

' Add to nullable numbers, using zero if the value is null. 

Dim sum As Double = d1.GetValueOrDefault() + d2.GetValueOrDefault()

The GetValueOrDefault method can take one argument, which is used as the default value if 
HasValue is False:

' Assign the current value, or negative infinity if value is null. 

Dim value As Double = d1.GetValueOrDefault(Double.NegativeInfinity)

You can check whether two nullable values are equal by using the Equals(Of T) method, 
which nullable types inherit from the IEquatable generic interface. This feature compensates 
for the lack of support of the equal (=) and not equal (<>) operators:

If d1.Equals(0) OrElse d1.Equals(d2) Then 

' d1 is either zero or is equal to d2. 

C11621837.fm  Page 423  Saturday, December 10, 2005  7:17 PM



424 Part II: Object-Oriented Programming

ElseIf d1.Equals(Nothing) Then 

' This is another way to test whether a nullable type has a value. 

End If

Alternatively, you can use the Nullable.Equals(Of T) static method:

If Nullable.Equals(d1, d2) Then 

' d1 is equal to d2. 

End If

You can also compare two nullable values by means of the Nullable.Compare static method; 
according to this method, a null value is always less than any nonnull value: 

Select Case Nullable.Compare(d1, d2) 

Case -1 

Console.WriteLine("d1 is null or is less than d2") 

Case 1 

Console.WriteLine("d2 is null or is less than d1") 

Case 0 

Console.WriteLine("d1 and d2 have same value or are both null.")End Select

Three-Valued Boolean Logic

Three-value logic is quite common when you are dealing with Boolean expressions with oper-
ands that can take the True, False, or Unknown value. For example, SQL makes extensive use 
of three-value logic because it must account for nullable fields. Consider the following SQL 
statement:

SELECT * FROM Customers WHERE City="Rome" Or Country="Vatican"

If the City field is NULL, the City=“Rome” subexpression is also NULL; however, if Country is 
equal to “Vatican,” the second operand of the Or operator is True, which makes the entire 
WHERE clause True. In other words, a True operand makes the entire Or expression equal to 
True even if the other operand is NULL. Likewise, a False operand in an And expression 
makes the entire expression False, regardless of whether the other operand is known.

Given the similarities of three-value logic values with nullable types you might believe that you 
can implement the former ones by using the Nullable(Of Boolean) type as a base class and 
then overload the And, Or, Not, and Xor operators (and a few others). Unfortunately, this isn’t 
a viable solution because the Nullable(Of T) type is a structure and can’t be the base class for 
another type. This means that the only way you can implement three-value logic in your appli-
cation is by defining a new type from scratch, as in the following code:

Public Structure NullableBoolean 

Private m_HasValue As Boolean 

Private m_Value As Boolean 

 

Sub New(ByVal value As Boolean) 

m_HasValue = True 

m_Value = value 

End Sub 

 

C11621837.fm  Page 424  Saturday, December 10, 2005  7:17 PM



Chapter 11: Generics 425

Public ReadOnly Property HasValue() As Boolean 

Get 

Return m_HasValue 

End Get 

End Property 

 

Public ReadOnly Property Value() As Boolean 

Get 

If Not m_HasValue Then Throw New InvalidOperationException() 

Return m_Value 

End Get 

End Property 

 

Public Overrides Function ToString() As String 

If Me.HasValue Then 

Return Me.Value.ToString() 

Else 

Return "Null" 

End If 

End Function 

 

Public Shared Operator =(ByVal v1 As NullableBoolean, _ 

ByVal v2 As NullableBoolean) As NullableBoolean 

If v1.HasValue AndAlso v2.HasValue Then 

Return New NullableBoolean(v1.Value = v2.Value) 

Else 

Return New NullableBoolean 

End If 

End Operator 

 

Public Shared Operator <>(ByVal v1 As NullableBoolean, _ 

ByVal v2 As NullableBoolean) As NullableBoolean 

Return Not (v1 = v2) 

End Operator 

 

Public Shared Operator And(ByVal v1 As NullableBoolean, _ 

ByVal v2 As NullableBoolean) As NullableBoolean 

If (v1.HasValue AndAlso v1.Value = False) OrElse _ 

(v2.HasValue AndAlso v2.Value = False) Then 

Return New NullableBoolean(False) 

ElseIf v1.HasValue AndAlso v2.HasValue Then 

Return New NullableBoolean(True) 

Else 

Return New NullableBoolean() 

End If 

End Operator 

 

Public Shared Operator Or(ByVal v1 As NullableBoolean, _ 

ByVal v2 As NullableBoolean) As NullableBoolean 

If (v1.HasValue AndAlso v1.Value) OrElse _ 

(v2.HasValue AndAlso v2.Value) Then 

Return New NullableBoolean(True) 

ElseIf v1.HasValue AndAlso v2.HasValue Then 

Return New NullableBoolean(False) 

Else 

Return New NullableBoolean() 

C11621837.fm  Page 425  Saturday, December 10, 2005  7:17 PM



426 Part II: Object-Oriented Programming

End If 

End Operator 

 

Public Shared Operator Not(ByVal v As NullableBoolean) As NullableBoolean 

If v.HasValue Then 

Return New NullableBoolean(Not v.Value) 

Else 

Return New NullableBoolean 

End If 

End Operator 

 

Public Shared Operator Xor(ByVal v1 As NullableBoolean, _ 

ByVal v2 As NullableBoolean) As NullableBoolean 

If v1.HasValue AndAlso v2.HasValue Then 

Return v1.Value Xor v2.Value 

Else 

Return New NullableBoolean 

End If 

End Operator 

 

Public Shared Operator IsTrue(ByVal v As NullableBoolean) As Boolean 

Return v.HasValue AndAlso v.Value 

End Operator 

 

Public Shared Operator IsFalse(ByVal v As NullableBoolean) As Boolean 

Return v.HasValue AndAlso v.Value = False 

End Operator 

 

Public Shared Widening Operator CType(ByVal v As Boolean) As NullableBoolean 

Return New NullableBoolean(v) 

End Operator 

 

Public Shared Narrowing Operator CType(ByVal v As NullableBoolean) As Boolean 

If v.HasValue Then 

Return v.Value 

Else 

Throw New InvalidOperationException("Nullable objects must have a value") 

End If 

End Operator 

End Structure

You use the NullableBoolean type as you’d use a Nullable(Of Boolean) type, except it sup-
ports all the operators you need when working with three-value logic:

Dim fal As NullableBoolean = False 

Dim tru As NullableBoolean = True 

Dim unk As NullableBoolean ' Null is the default state. 

 

Console.WriteLine(fal And unk) ' => False 

Console.WriteLine(tru And unk) ' => Null 

Console.WriteLine(fal Or unk) ' => Null 

Console.WriteLine(tru Or unk) ' => True 

Console.WriteLine(fal Xor unk) ' => Null 

Console.WriteLine(tru Xor unk) ' => Null 

Console.WriteLine(fal = unk) ' => Null 

Console.WriteLine(tru <> unk) ' => Null

C11621837.fm  Page 426  Saturday, December 10, 2005  7:17 PM



Chapter 11: Generics 427

The CType operator allows you to convert a NullableBoolean to a Boolean by means of an 
explicit conversion:

' Throws an exception if the NullableBoolean element has an unknown value. 

Dim ok As Boolean = CBool(fal)

The IsTrue and IsFalse operators add support for the AndAlso and OrElse keywords:

If fal AndAlso tru Then 

' This block isn't executed. 

End If

Support for Math Operators

As I emphasized many times in previous sections, a generic type can’t perform any math oper-
ation on objects with a type defined by using a generic parameter. In general, no operator can 
be used and no method can be invoked on such objects. (As a special case, you can work 
around the lack of support of relational operators by enforcing a constraint for either the 
IComparable or the IEquatable interfaces.)

In a perfect world, all .NET numeric types would support a common interface that would 
allow a generic type to perform math. For example, suppose that the following interface 
were defined in the .NET Framework:

Public Interface IMath(Of T) 

Function Add(ByVal n As T) As T 

Function Subtract(ByVal n As T) As T 

Function Multiply(ByVal n As T) As T 

Function Divide(ByVal n As T) As T 

End Interface

If all the .NET Framework numeric types supported the IMath(Of T) interface—in much the 
same way they support the IComparable(Of T) interface—a generic type could perform the 
four math operations on these types with no effort. Alas, this interface is neither defined in 
the .NET Framework nor implemented by any .NET type, so this approach isn’t viable. It’s a 
pity, and we can only hope that Microsoft will remedy this in a future version of the .NET 
Framework.

To understand how you can work around this issue, consider the relation between the 
IComparable(Of T) and the IComparer(Of T) interfaces. If you want to compare two objects 
that support the IComparable(Of T) interface, you can just invoke the CompareTo method 
that these objects expose. However, if the objects don’t expose this interface, you can define 
a type that supports the IComparer(Of T) interface and that is capable of comparing two 
objects of type T. 

Along the same lines, you can work around the lack of support for math operators by defining 
an ICalculator(Of T) interface, and then create one or more types that implement this interface; 

C11621837.fm  Page 427  Saturday, December 10, 2005  7:17 PM



428 Part II: Object-Oriented Programming

these types provide the ability to perform math on elements of type T. Here’s the definition 
of the ICalculator(Of T) interface:

Public Interface ICalculator(Of T) 

Function Add(ByVal n1 As T, ByVal n2 As T) As T 

Function Subtract(ByVal n1 As T, ByVal n2 As T) As T 

Function Multiply(ByVal n1 As T, ByVal n2 As T) As T 

Function Divide(ByVal n1 As T, ByVal n2 As T) As T 

Function ConvertTo(ByVal n As Object) As T 

End Interface

Next, you need to implement one or more classes that implement this interface for all the 
numeric types in the .NET Framework and, optionally, for any custom type in your applica-
tion that supports the four operators. You can adopt two strategies: you can have one separate 
class for each numeric type or an individual class that implements several versions of the 
interface, one of each numeric type you want to support.

The following NumericCalculator class implements the ICalculator interface for the Integer 
and the Double types, but you can easily extend it to support all other primitive .NET numeric 
types. As you can see, it’s a lot of code, but it’s mostly a copy-and-paste job:

Public Class NumericCalculator 

Implements ICalculator(Of Integer) 

Implements ICalculator(Of Double) 

 

' The ICalculator(Of Integer) interface 

Public Function AddInt32(ByVal n1 As Integer, ByVal n2 As Integer) As Integer _ 

Implements ICalculator(Of Integer).Add 

Return n1 + n2 

End Function 

Public Function SubtractInt32(ByVal n1 As Integer, ByVal n2 As Integer) As Integer _ 

Implements ICalculator(Of Integer).Subtract 

Return n1 - n2 

End Function 

Public Function MultiplyInt32(ByVal n1 As Integer, ByVal n2 As Integer) As Integer _ 

Implements ICalculator(Of Integer).Multiply 

Return n1 * n2 

End Function 

Public Function DivideInt32(ByVal n1 As Integer, ByVal n2 As Integer) As Integer _ 

Implements ICalculator(Of Integer).Divide 

Return n1 \ n2 

End Function 

Public Function ConvertToInt32(ByVal n As Object) As Integer _ 

Implements ICalculator(Of Integer).ConvertTo 

Return CInt(n) 

End Function 

 

' The ICalculator(Of Double) interface 

Public Function AddDouble(ByVal n1 As Double, ByVal n2 As Double) As Double _ 

Implements ICalculator(Of Double).Add 

Return n1 + n2 

End Function 

Public Function SubtractDouble(ByVal n1 As Double, ByVal n2 As Double) As Double _ 

Implements ICalculator(Of Double).Subtract 

C11621837.fm  Page 428  Saturday, December 10, 2005  7:17 PM



Chapter 11: Generics 429

Return n1 - n2 

End Function 

Public Function MultiplyDouble(ByVal n1 As Double, ByVal n2 As Double) As Double _ 

Implements ICalculator(Of Double).Multiply 

Return n1 * n2 

End Function 

Public Function DivideDouble(ByVal n1 As Double, ByVal n2 As Double) As Double _ 

Implements ICalculator(Of Double).Divide 

Return n1 / n2 

End Function 

Public Function ConvertToDouble(ByVal n As Object) As Double _ 

Implements ICalculator(Of Double).ConvertTo 

Return CDbl(n) 

End Function 

End Class

Let’s now see how you can leverage the NumericCalculator class in a generic type that works 
as a list but is also capable of performing some basic statistical operations on its elements:

Public Class StatsList(Of T, C As {New, ICalculator(Of T)}) 

Inherits List(Of T) 

 

' The object used as a calculator 

Dim calc As New C 

 

' Return the sum of all elements. 

Public Function Sum() As T 

Dim result As T 

For Each elem As T In Me 

result = calc.Add(result, elem) 

Next 

Return result 

End Function 

 

' Return the average of all elements. 

Public Function Avg() As T 

Return calc.Divide(Me.Sum, calc.ConvertTo(Me.Count)) 

End Function 

End Class

Using the StatsList generic type is a breeze:

Dim sl As New StatsList(Of Double, NumericCalculator) 

For i As Integer = 0 To 10 

sl.Add(i) 

Next 

Console.WriteLine("Sum = {0}", sl.Sum) ' => Sum = 55 

Console.WriteLine("Average = {0}", sl.Avg) ' => Average = 5

Generics and Events

Generics can greatly simplify the structure of types that contain public events. As you might 
recall from Chapter 7, “Delegates and Events,” all event handlers must receive two arguments: 
sender and e, where the latter is a System.EventArgs (if the event doesn’t expose any additional 

C11621837.fm  Page 429  Saturday, December 10, 2005  7:17 PM



430 Part II: Object-Oriented Programming

property to subscribers) or an object that derives from System.EventArgs. To follow Microsoft 
guidelines closely, for each event that carries one or more arguments, you should define a type 
named EventNameEventArgs that derives from EventArgs, the corresponding EventName-
EventHandler delegate, and an OnEventName overridable procedure that raises the event. It’s 
a lot of work for just one event, and it’s no surprise that most developers don’t feel like writing 
all this code just to implement one event.

To see how the inheritance constraint can help you in streamlining the structure of events, 
let’s suppose you are authoring an Employee class that exposes the Name and BirthDate 
properties and raises a PropertyNameChanging event before either property is modified 
(so that subscribers can cancel the assignment) and a PropertyNameChanged event after the 
property has been assigned. According to guidelines, you should define a class named 
NameChangingEventArgs that exposes the ProposedValue read-only string property (the 
value about to be assigned to the Name property) and the Cancel read-write Boolean property 
(which can be set to True by event subscribers to cancel the assignment). Likewise, you 
should define a class named BirthDateChangingEventArgs class, which exposes the same 
properties except that the ProposedValue property returns a Date value. Instead of defining 
two distinct classes, let’s create a generic type named PropertyChangingEventArgs:

Public Class PropertyChangingEventArgs(Of T) 

' Inheriting from CancelEventArgs adds support for the Cancel property. 

Inherits System.ComponentModel.CancelEventArgs 

 

Public Sub New(ByVal proposedValue As T) 

M_ProposedValue = proposedValue 

End Sub 

 

Private m_ProposedValue As T 

 

Public ReadOnly Property ProposedValue() As T 

Get 

Return m_ProposedValue 

End Get 

End Property 

End Class

You now have two options. First, you can use the PropertyChangingEventArgs(Of String) type 
for the NameChanging event and the PropertyChangingEventArgs(Of Date) type for the 
BirthDateChanging event; in this case you’d need to edit the code slightly in the Employee 
class to account for these different names. Second, you can define two regular classes that 
inherit from the PropertyChangingEventArgs generic type:

Public Class NameChangingEventArgs 

Inherits PropertyChangingEventArgs(Of String) 

… 

End Class 

 

Public Class BirthDateChangingEventArgs 

Inherits PropertyChangingEventArgs(Of Date) 

… 

End Class

C11621837.fm  Page 430  Saturday, December 10, 2005  7:17 PM



Chapter 11: Generics 431

In the remainder of this section, I assume that you’ve adopted the first approach and that all 
events are directly defined in terms of the PropertyChangingEventArgs(Of T) generic type.

The System.EventHandler(Of T) type is a generic delegate that can be passed any type that 
derives from System.EventArgs and that relieves you from defining a different delegate for 
each event. Thanks to this generic type and the nongeneric EventHandler type, you can define 
the four events in the Employee class as follows:

Public Class Employee 

Event NameChanging As EventHandler(Of PropertyChangingEventArgs(Of String)) 

Event BirthDateChanging As EventHandler(Of PropertyChangingEventArgs(Of Date)) 

Event NameChanged As EventHandler 

Event BirthDateChanged As EventHandler 

…

Adding support for the Name and BirthDate properties, and corresponding XxxxChanging 
and XxxxChanged events, is now straightforward:

' (Continuing previous code snippet…) 

Private m_Name As String 

 

Public Property Name() As String 

Get 

Return m_Name 

End Get 

Set(ByVal value As String) 

If m_Name <> value Then 

Dim e As New PropertyChangingEventArgs(Of String)(value) 

OnNameChanging(e) 

If e.Cancel Then Exit Property 

m_Name = value 

OnNameChanged(EventArgs.Empty) 

End If 

End Set 

End Property 

 

Private m_BirthDate As Date 

 

Public Property BirthDate() As Date 

Get 

Return m_BirthDate 

End Get 

Set(ByVal value As Date) 

If m_BirthDate <> value Then 

Dim e As New PropertyChangingEventArgs(Of Date)(value) 

OnBirthDateChanging(e) 

If e.Cancel Then Exit Property 

m_BirthDate = value 

OnBirthDateChanged(EventArgs.Empty) 

End If 

End Set 

End Property 

 

' Protected OnXxxx methods 

Protected Overridable Sub OnNameChanging(ByVal e As _ 

C11621837.fm  Page 431  Saturday, December 10, 2005  7:17 PM



432 Part II: Object-Oriented Programming

PropertyChangingEventArgs(Of String)) 

RaiseEvent NameChanging(Me, e) 

End Sub 

 

Protected Overridable Sub OnNameChanged(ByVal e As EventArgs) 

RaiseEvent NameChanged(Me, e) 

End Sub 

 

Protected Overridable Sub OnBirthDateChanging(ByVal e As _ 

PropertyChangingEventArgs(Of Date)) 

RaiseEvent BirthDateChanging(Me, e) 

End Sub 

 

Protected Overridable Sub OnBirthDateChanged(ByVal e As EventArgs) 

RaiseEvent BirthDateChanged(Me, e) 

End Sub 

End Class

Generics can help you reduce the amount of code needed to support events in one more way. 
The Set blocks in the Name and BirthDate property procedures are almost identical, except 
for the name of the EventArgs-derived class and the OnXxxx methods. Even if the names of 
these OnXxxx methods are different, the syntax is similar, so you can invoke these methods 
through delegates. This technique enables you to move the common code into a separate 
module and reuse it for all the properties in all your types:

Public Module EventHelper 

' Delegates declaration 

Public Delegate Sub OnPropertyChangingEventHandler(Of T) _ 

(ByVal e As PropertyChangingEventArgs(Of T)) 

Public Delegate Sub OnPropertyChangedEventHandler(ByVal e As EventArgs) 

 

Public Sub AssignProperty(Of T)(ByRef oldValue As T, ByVal proposedValue As T, _ 

ByVal onChanging As OnPropertyChangingEventHandler(Of T), _ 

ByVal onChanged As OnPropertyChangedEventHandler) 

' Nothing to do if the new value is the same as the old value. 

If Object.Equals(oldValue, proposedValue) Then Exit Sub 

' Invoke the OnChangingXXXX method; exit if subscribers canceled the assignment. 

Dim e As New PropertyChangingEventArgs(Of T)(proposedValue) 

onChanging.DynamicInvoke(e) 

If e.Cancel Then Exit Sub 

' Proceed with assignment, and then invoke the OnChangedXXXX method. 

oldValue = proposedValue 

onChanged.DynamicInvoke(EventArgs.Empty) 

End Sub 

End Module

Thanks to the EventHelper module you can simplify the code in the Name and BirthDate 
properties significantly (changes are in bold type):

Private m_Name As String 

 

Public Property Name() As String 

Get 

C11621837.fm  Page 432  Saturday, December 10, 2005  7:17 PM



Chapter 11: Generics 433

Return m_Name 

End Get 

Set(ByVal value As String) 

AssignProperty(Of String)(m_Name, value, AddressOf OnNameChanging, _ 

AddressOf OnNameChanged) 

End Set 

End Property 

 

Private m_BirthDate As Date 

 

Public Property BirthDate() As Date 

Get 

Return m_BirthDate 

End Get 

Set(ByVal value As Date) 

AssignProperty(Of Date)(m_BirthDate, value, AddressOf OnBirthDateChanging, _ 

AddressOf OnBirthDateChanged) 

End Set 

End Property

Object Pools

An object pool is a collection of objects that have been created and initialized in advance and 
are ready for the application to use them. Object pools are quite common in programming. 
For example, ADO.NET maintains a pool of connection objects: when the application asks for 
a connection to a database and a connection in the pool that already points to the specific 
database is available, ADO.NET takes a connection from the pool instead of instantiating it 
from scratch. When the application asks to close the connection, the physical connection isn’t 
actually closed and the connection object is simply returned to the pool. When the same or 
another application asks for a connection to the same database, the connection object is taken 
from the pool, thus saving several seconds.

The following ObjectPool generic type implements a simple object pool. You can use this pool to 
create a new instance of a given type using the CreateObject method. When you don’t need the 
object any longer, you can simply return it to the pool by using the DestroyObject method so 
that the next time the CreateObject method is invoked no object is physically created:

Public Class ObjectPool(Of T As New) 

Dim pool As New List(Of T) 

 

' Create an object, taking it from the pool if possible. 

Function CreateObject() As T 

If pool.Count = 0 Then 

Return New T 

Else 

' Return the first object to the pool. 

Dim item As T = pool(0) 

pool.RemoveAt(0) 

Return item 

End If 

End Function 

 

C11621837.fm  Page 433  Saturday, December 10, 2005  7:17 PM



434 Part II: Object-Oriented Programming

' Return an object to the pool. 

Public Sub DestroyObject(ByVal item As T) 

pool.Add(item) 

End Sub 

End Class

The ObjectPool class is especially useful for types that require a significant amount of time 
to be instantiated; under such circumstances, the application can improve performance sub-
stantially by keeping these objects alive in the pool:

Dim pool As New ObjectPool(Of Employee) 

' These two elements are created when the method is invoked. 

Dim e1 As Employee = pool.CreateObject() 

Dim e2 As Employee = pool.CreateObject() 

' Return one object to the pool, and then set its reference to Nothing. 

pool.DestroyObject(e1) 

e1 = Nothing 

' Now the pool contains one element; thus, the next statement takes it from there. 

Dim e3 As Employee = pool.CreateObject() 

…

As I already explained, no form of generic constraint enables you to specify that a type must 
have a constructor with a given signature; thus, you can’t pass arguments when instantiating 
a type that appears as a generic parameter. This issue severely limits the usefulness of the 
ObjectPool class.

The simplest way to work around this limitation and make the ObjectPool type more versatile 
is to define an interface that all poolable objects must implement:

Public Interface IPoolable 

Sub Initialize(ByVal ParamArray propertyValues() As Object) 

Function IsEqual(ByVal ParamArray propertyValues() As Object) As Boolean 

End Interface

For each type you should define a minimum set of properties that can distinguish individual 
instances of that type. For example, two Employee objects should be considered as equal 
when their Name and BirthDate properties have the same values; therefore, the Employee 
class might implement the IPoolable interface as follows:

Public Class Employee 

Implements IPoolable 

 

Public Sub Initialize(ByVal ParamArray propertyValues() As Object) _ 

Implements IPoolable.Initialize 

Me.Name = CStr(propertyValues(0)) 

Me.BirthDate = CDate(propertyValues(1)) 

End Sub 

 

Public Function IsEqual(ByVal ParamArray propertyValues() As Object) As Boolean _ 

Implements IPoolable.IsEqual 

Return Me.Name = CStr(propertyValues(0)) AndAlso _ 

Me.BirthDate = CDate(propertyValues(1)) 

End Function 

 

C11621837.fm  Page 434  Saturday, December 10, 2005  7:17 PM



Chapter 11: Generics 435

' (Implementation of Name and BirthDate properties is omitted.…) 

… 

End Class

You can now improve the ObjectPool class to take advantage of the IPoolable interface and 
reuse an object in the pool only if its most important properties are equal to those of the 
object requested by the client:

Public Class ObjectPoolEx(Of T As {New, IPoolable}) 

Dim pool As New List(Of T) 

 

' Create an object, taking it from the pool if possible. 

Function CreateObject(ByVal ParamArray propertyValues() As Object) As T 

For i As Integer = 0 To pool.Count - 1 

Dim item As T = pool(i) 

If item.IsEqual(propertyValues) Then 

' We've found an object with the required properties. 

pool.RemoveAt(i) 

Return item 

End If 

Next 

' Create and return a brand-new object. 

Dim obj As New T 

obj.Initialize(propertyValues) 

Return obj 

End Function 

 

' Return an object to the pool. 

Public Sub DestroyObject(ByVal item As T) 

pool.Add(item) 

End Sub 

End Class

The code that uses the ObjectPoolEx class to create a pool of Employee objects must provide 
an initial value for the Name and BirthDate properties:

Dim pool As New ObjectPoolEx(Of Employee) 

' These two elements are created when the method is invoked. 

Dim e1 As Employee = pool.CreateObject("Joe", #1/1/1961#) 

Dim e2 As Employee = pool.CreateObject("Ann", #2/2/1962#) 

' Return them to the pool and set their references to Nothing.  

pool.DestroyObject(e1) 

e1 = Nothing 

pool.DestroyObject(e2) 

e2 = Nothing 

' This object can't be taken from the pool, because its 

' properties don't match any of the objects in the pool. 

Dim e3 As Employee = pool.CreateObject("Joe", #3/3/1963#) 

' This object matches exactly one object in the pool; thus, no new instance is created. 

Dim e4 As Employee = pool.CreateObject("Ann", #2/2/1962#)

Once again, keep in mind that object pools are convenient only if the time you spend to 
instantiate an object is relevant; in all other cases, using an object pool is likely to degrade 
your performance without buying you any other benefit.

C11621837.fm  Page 435  Saturday, December 10, 2005  7:17 PM



C11621837.fm  Page 436  Saturday, December 10, 2005  7:17 PM




