
589

18 Custom Windows Forms Controls

As if the controls in the Windows Forms package weren’t enough, you can create your
own controls. As a matter of fact, Visual Studio makes the creation of new controls a
breeze. In this chapter, I’ll show how you can create custom controls using one of the
following approaches:

■ Inheriting from an existing control

■ Composing multiple controls

■ Creating a control from scratch

You can deploy the control as a private assembly or install it in the GAC. The latter
solution is preferable if the control must be used by many applications, but using pri-
vate assemblies is OK in many cases. The control must not be installed in the GAC if it
is being displayed from inside Internet Explorer. (See the section “Hosting Custom
Controls in Internet Explorer” at the end of this chapter.)

Note To keep the code as concise as possible, all the code samples in this section assume
that the following Imports statements are used at the file or project level:

Imports System.ComponentModel
Imports System.ComponentModel.Design
Imports System.Text.RegularExpressions
Imports System.Drawing.Drawing2D
Imports System.Threading
Imports System.Drawing.Design
Imports System.Windows.Forms.Design

Inheriting from an Existing Control
The easiest way to author a new Windows Forms control is by inheriting it from an
existing control. This approach is the right one when you want to extend an existing
control with new properties, methods, or events but without changing its appearance
significantly. For example, you can create a ListBox that supports icons by using the
owner-draw mode internally and exposing an Images collection to the outside. Here
are other examples: an extended PictureBox control that supports methods for graphic
effects and a TreeView-derived control that automatically displays the file and folder
hierarchy for a given path.

C18620598.fm Page 589 Friday, November 21, 2003 11:37 AM

590 Part IV: Win32 Applications

In the example that follows, I use this technique to create an extended TextBox control
named TextBoxEx, with several additional properties that perform advanced validation
chores. I chose this example because it’s relatively simple without being a toy control
and because it’s complete and useful enough to be used in a real application.

The TextBoxEx control has a property named IsRequired, which you set to True if the
control must be filled before moving to another control, and the ValidateRegex prop-
erty, which is a regular expression that the field’s contents must match. There’s also an
ErrorMessage property and a Validate method, which returns True or False and can dis-
play a message box if the validation failed. The control will take advantage of the Val-
idating event of the standard TextBox control to cancel the focus shift if the current
value can’t be validated.

Creating the Control Project

Create a new Windows Control Library project named CustomControlDemo. A project
of this type is actually a Class Library project (that is, it generates a DLL) and contains
a file named UserControl1.vb. Rename the file TextBoxEx.vb, then switch to its code
portion, and replace the template created by Visual Studio with what follows:

Public Class TextBoxEx
Inherits System.Windows.Forms.TextBox

End Class

This is just the skeleton of our new control, but it already has everything it needs to
behave like a TextBox control. Because you want to expand on this control, let’s begin
by adding the new IsRequired property:

Public Class TextBoxEx
Inherits System.Windows.Forms.TextBox

Sub New()
MyBase.New()

End Sub

’ The IsRequired property
Dim m_IsRequired As Boolean

Property IsRequired() As Boolean
Get

Return m_IsRequired
End Get
Set(ByVal Value As Boolean)

m_IsRequired = Value
End Set

End Property
End Class

C18620598.fm Page 590 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 591

Note that you can’t use a public field to expose a property in the Properties window,
so you must use a Property procedure even if you don’t plan to validate the value
entered by the user, as in the preceding case.

The Sub New constructor isn’t strictly required in this demo, but it doesn’t hurt either.
In a more complex custom control, you can use this event to initialize a property to a
different value—for example, you might set the Text property to a null string so that
the developer who uses this control doesn’t have to do it manually.

The control doesn’t do anything useful yet, but you can compile it by selecting Build
on the Build menu. This action produces a DLL executable file. Take note of the path
of this file because you’ll need it very soon.

Creating the Client Application

On the File menu, point to Add Project and then click New Project to add a Windows
Application project named CustomControlsTest to the same solution as the existing
control. You can also create this test application using another instance of Visual Stu-
dio, but having both projects in the same solution has an important advantage, as I’ll
explain shortly.

Next make CustomControlsTest the start-up project so that it will start when you press
F5. You can do this by right-clicking the project in the Solution Explorer window and
clicking Set As Startup Project on the shortcut menu. Visual Studio confirms the new
setting by displaying the new start-up project in boldface.

Right-click the Toolbox and click Add Tab on the shortcut menu to create a new tab
named My Custom Controls, on which you’ll place your custom controls. This step isn’t
required, but it helps you keep things well ordered.

Right-click the new Toolbox tab (which is empty), and click Add/Remove Items on the
shortcut menu. Switch to the .NET Framework Components page in the Customize
Toolbox dialog box that appears, click Browse, and select the CustomControlDemo.dll
file that you compiled previously. The TextBoxEx control appears now in the Custom-
ize Toolbox dialog box, so you can ensure that its check box is selected and that it is
ready to be added to the custom tab you’ve created in the Toolbox. (See Figure 18-1.)

C18620598.fm Page 591 Friday, November 21, 2003 11:37 AM

592 Part IV: Win32 Applications

F18LR01.eps

Figure 18-1 Adding a new control to the Toolbox

Drop an instance of the control on the form, and switch to the Properties window.
You’ll see all the properties of the TextBox control, which should be no surprise
because the TextBoxEx control inherits them from its base class. Scroll the Properties
window to ensure that the new IsRequired property is also there; the designer has
detected that it’s a Boolean property, so the designer knows that the property can be
set to True or False.

Adding the Validation Logic

Now that you know your control is going to work correctly on a form’s surface, you
can go back to the TextBoxEx code module and add the remaining two properties.
Notice that the code checks that the regular expression assigned to the ValidateRegex
property is correct by attempting a search on a dummy string:

’ The ErrorMessage property
Dim m_ErrorMessage As String

Property ErrorMessage() As String
Get

Return m_ErrorMessage
End Get
Set(ByVal Value As String)

m_ErrorMessage = Value
End Set

End Property

’ The ValidateRegex property
Dim m_ValidateRegex As String

C18620598.fm Page 592 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 593

Property ValidateRegex() As String
Get

Return m_ValidateRegex
End Get
Set(ByVal Value As String)

’ Check that this is a valid regular expression.
Try

If Value <> ““ Then
Dim dummy As Boolean = Regex.IsMatch(“abcde", Value)

End If
’ If no error, value is OK.
m_ValidateRegex = Value

Catch ex As Exception
MessageBox.Show(ex.Message, “Invalid Property", _

MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

End Set
End Property

You now have all you need to implement the Validate method, which returns False if
the current value doesn’t pass the validation test. Notice that the code uses the
MyBase.Text property to access the control’s contents:

Function Validate() As Boolean
’ Assume control passed the validation.
Validate = True
’ Apply the IsRequired property.
If Me.IsRequired And Me.Text = ““ Then

Validate = False
End If
’ Apply the ValidateRegex property if specified.
If Validate = True And Me.ValidateRegex <> ““ Then

Validate = Regex.IsMatch(Me.Text, Me.ValidateRegex)
End If

End Function

The structure of the Validate method permits you to add other validation tests just
before the End Function statement. Having a single place in which the validation
occurs means that this is the only point to modify when you want to extend the control
with new properties.

You still need to write the code that actually validates the current value when the user
moves the input focus to a control that has CausesValidation set to True. The inner
TextBox control fires a Validating event when this happens, so you can implement the
validation by using the following naive approach:

Private Sub TextBoxEx_Validating(ByVal sender As Object, _
ByVal e As CancelEventArgs) Handles MyBase.Validating
’ If the validation fails, cancel the focus shift.
If Me.Validate() = False Then e.Cancel = True

End Sub

C18620598.fm Page 593 Friday, November 21, 2003 11:37 AM

594 Part IV: Win32 Applications

This technique works in the sense that it does prevent the focus from leaving the Text-
BoxEx control. The problem, however, is that you can’t prevent the Validating event
from propagating to your client form. In other words, the developer who uses this con-
trol will see a Validating event even if the focus shift is going to be canceled anyway.

A far better technique consists of intercepting the validation action before the inner
TextBox object fires the event. You can do this by overriding the OnValidating pro-
tected method in the base class. You can create the template for the overridden method
by clicking Overrides in the Class Name combo box in the code editor and then click-
ing the method in question in the Method Name combo box. (See Figure 18-2.) The
correct code for performing the internal validation follows; it correctly raises the Vali-
dating event only if the validation passed:

Protected Overrides Sub OnValidating(ByVal e As CancelEventArgs)
If Me.Validate() Then

’ If validation is OK, let the base class fire the Validating event.
MyBase.OnValidating(e)

Else
’ Else, cancel the focus shift.
e.Cancel = True

End If
End Sub

F17LR02.eps

Figure 18-2 Using the code editor and the Class Name and Method Name combo boxes
to create an overridden method

The focal point here is the call to MyBase.OnValidating, where the base class fires the
Validating event and possibly performs additional actions.

Testing the Control

You can test your control in the client form at last. Create a form in the client applica-
tion, and drop the following controls on it: a TextBoxEx control, a regular TextBox

C18620598.fm Page 594 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 595

control, and a Label control that you’ll use for displaying messages. Next set the Text-
BoxEx properties as follows:

‘ A required field that can contain only digits
TextBoxEx1.IsRequired = True
TextBoxEx1.ValidateRegex = “\d+”

Run the program; you’ll see that you can’t move the focus from the TextBoxEx control to
the TextBox control unless you enter one or more digits (or you set the TextBox control’s
CausesValidation property to False). You can also add a Validating event procedure that
proves that the form receives this event only if the internal validation passed:

Private Sub TextBoxEx1_Validating(ByVal sender As Object, _
ByVal e As CancelEventArgs) Handles TextBoxEx1.Validating
MsgBox(“Validating event in form”)

End Sub

Design-Time Debugging

Whenever you set a control’s property from inside the Properties window, Visual Stu-
dio .NET invokes the Property Set procedure for that property, so in general design-
time property assignments work in much the same way as they work at run time.
Sometimes, however, you might see slightly different behaviors at design time and run
time and might like to run the control under a debugger to see what’s going wrong.
Alas, you can’t debug a control when Visual Studio .NET is in design time because the
debugger can’t work on an instance of the DLL that isn’t running yet. In this section, I’ll
show you a simple technique that lets you run the control under the debugger at run
time and design time.

The trick is quite simple, once you know it. Create a new solution with the control
library as its only project, open the Debugging page of the Project Properties dialog, set
the Start Action to Start external program, and type the complete path to Visual Studio
.NET ’ s execu tab le (C :\Program F i l e s\Mic roso f t V i sua l S tud io .NET
2003\Common7\IDE\devenv.exe for a standard installation). In the Command line
arguments field, type the complete path to the demo project or solution that uses the
custom control, enclosing it between double quotation marks if it contains spaces. (See
Figure 18-3.) That’s all you need!

Set all the breakpoints you want in the custom control’s source code, and run the
project. Visual Studio .NET will compile the control and run another instance of Visual
Studio itself, which in turn will load the sample project that uses the custom control.
You can now set properties in the Properties window and execution will stop at your
breakpoints. (Of course, these breakpoints will be active also when the control is in
runtime mode.)

C18620598.fm Page 595 Friday, November 21, 2003 11:37 AM

596 Part IV: Win32 Applications

F18LR03.eps

Figure 18-3 Setting project properties for testing a custom control at design time with a different
instance of Visual Studio .NET

Improving the Custom Control
You can add many other properties to the TextBoxEx control to increase its usefulness
and flexibility. Each property is an occasion to discuss additional advanced capabilities
of custom control creation.

Working with Other Types

It is interesting to see how the Properties browser works with properties that aren’t
plain numbers or strings. For example, you can add a DisplayControl and an ErrorFore-
Color property. The former takes a reference to a control that will be used to display
the error message, and the latter is the color used for the error message itself. Imple-
menting these properties is straightforward:

Dim m_ErrorForeColor As Color = SystemColors.ControlText

Property ErrorForeColor() As Color
Get

Return m_ErrorForeColor
End Get
Set(ByVal Value As Color)

m_ErrorForeColor = Value
End Set

End Property

Dim m_DisplayControl As Control

Property DisplayControl() As Control
Get

Return m_DisplayControl
End Get

C18620598.fm Page 596 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 597

Set(ByVal Value As Control)
m_DisplayControl = Value

End Set
End Property

You reference these new properties at the end of the Validate method, after the valida-
tion code you wrote previously:

§
’ If the validation failed but the client defined a display control
’ and an error message, show the message in the control.
If Not (DisplayControl Is Nothing) And Me.ErrorMessage <> ““ Then

If Validate() Then
’ Delete any previous error message.
DisplayControl.Text = “"

Else
’ Display error message, and enforce color.
DisplayControl.Text = Me.ErrorMessage
DisplayControl.ForeColor = m_ErrorForeColor

End If
End If

End Function

Rebuild the solution, select the TextBoxEx control, and switch to the Properties win-
dow, where you’ll see a couple of interesting things. First, the ErrorForeColor property
displays the same color palette that all other color properties expose. Second, the Prop-
erties window recognizes the nature of the new DisplayControl property and displays
a drop-down list that lets you select one of the controls on the current form. In this par-
ticular example, you can set this property to the Label1 control so that all error mes-
sages appear there. Also, remember to store a suitable message in the ErrorMessage
property. Of course, you can do these operations from code as well, which is necessary
if the target control is on another form:

TextBoxEx1.ErrorMessage = “This field must contain a positive number"
TextBoxEx1.ErrorForeColor = Color.Red
TextBoxEx1.DisplayControl = Label1

You can see another smart behavior of the Properties window if you have an enumer-
ated property. For example, you can create a ValueType property that states the type
of variable to which the contents of the field will be assigned:

Enum ValidTypes
AnyType = 0
ByteType
ShortType
IntegerType
LongType
TypeSingleType
DoubleType
DecimalType
DateTimeType

End Enum

C18620598.fm Page 597 Friday, November 21, 2003 11:37 AM

598 Part IV: Win32 Applications

Dim m_ValidType As ValidTypes = ValidTypes.AnyType

Property ValidType() As ValidTypes
Get

Return m_ValidType
End Get
Set(ByVal Value As ValidTypes)

m_ValidType = Value
End Set

End Property

You can browse the demo application to see how this feature is implemented, but for
now just rebuild the solution and go to the Properties window again to check that the
ValueType property corresponds to a combo box that lets the user select the valid type
among those available.

Adding Attributes

You can further affect how your custom control uses and exposes the new properties
by means of attributes. For example, all public properties are displayed in the Proper-
ties window by default. This isn’t desirable for read-only properties (which are visible
but unavailable by default) or for properties that should be assigned only at run time
via code. You can control the visibility of elements in the Properties window by using
the Browsable attribute. The default value for this attribute is True, so you must set it
to False to hide the element. For example, let’s say that you want to hide a read-only
property that returns True if the control’s current value isn’t valid:

<Browsable(False)> _
ReadOnly Property IsInvalid() As Boolean

Get
Return Not Validate()

End Get
End Property

The EditorBrowsable attribute is similar to Browsable, but it affects the visibility of a
property, method, or event from inside the code editor, and in practice determines
whether you see a given member in the little window that IntelliSense displays. It takes
an EditorBrowsableState enumerated value, which can be Never, Always, or Advanced.
The Advanced setting makes a member visible only if you clear the Hide advanced
members option in the General page under the All languages folder (or the folder
named after the language you’re using), which in turn is in the Text Editor folder in the
Options dialog box that you reach from the Tools menu:

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Sub EnterExpertMode()

§
End Sub

C18620598.fm Page 598 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 599

Another frequently used attribute is Description, which defines the string displayed
near the bottom edge of the Properties window:

<Description(“The control that will display the error message”)> _
Property DisplayControl() As Control

§
End Property

You put a property into a category in the Properties window by using the Category
attribute. You can specify one of the existing categories—Layout, Behavior, Appear-
ance—or define a new one. If a property doesn’t belong to a specific category, it
appears in the Misc category:

<Description(“The control that will display the error message”), _
Category(“Validation”)> _

Property DisplayControl() As Control
§

End Property

By default, properties aren’t localizable and the form designer doesn’t save their values
in a separate source file when the user selects a language other than the default one.
You can change this default behavior by using the Localizable attribute:

<Localizable(True) > _
Property HeaderCaption() As String

§
End Property

The DefaultProperty attribute tells the environment which property should be selected
when the user creates a new instance of the control and then activates the Properties
window. Similarly, the DefaultEvent attribute specifies the event handler that’s auto-
matically created when you double-click on a control in the designer. (For example,
TextChanged is the default event for the TextBox control.) You apply these attributes
to the class and pass them the name of the property or the event:

<DefaultProperty(“IsRequired”), DefaultEvent(“InvalidKey”)> _
Public Class TextBoxEx

Inherits System.Windows.Forms.TextBox

Event InvalidKey(ByVal sender As Object, ByVal e As EventArgs)
§

End Class

The MergableProperty attribute tells whether a property is visible in the Properties win-
dow when multiple controls are selected. The default value of this attribute is True, so
you must include it explicitly only if you don’t want to allow the user to modify this
property for all the selected controls. In practice, you use this attribute when a property
can’t have the same value for multiple controls on a form (as in the case of the TabIn-
dex or Name property):

C18620598.fm Page 599 Friday, November 21, 2003 11:37 AM

600 Part IV: Win32 Applications

<MergableProperty(False)> _
Property ProcessOrder() As Integer

§
End Class

The RefreshProperties attribute is useful if a new value assigned to a property can
affect other properties in the Properties window. The default behavior of the Properties
window is that only the value of the property being edited is updated, but you can
specify that all properties should be requeried and refreshed by using this attribute:

Dim m_MaxValue As Long = Long.MaxValue

<RefreshProperties(RefreshProperties.All)> _
Property MaxValue() As Long

Get
Return m_MaxValue

End Get
Set(ByVal Value As Long)

m_MaxValue = Value
’ This property can affect the Value property.
If Value > m_MaxValue Then Value = m_MaxValue

End Set
End Property

Working with Icons

Each of your carefully built custom controls should have a brand-new icon assigned to
them, to replace the default icon that appears in Visual Studio .NET’s control Toolbox.
Control icons can be either stand-alone .bmp or .ico files, or bitmaps embedded in a
DLL (typically that is the same DLL that contains the custom control, but it can be a dif-
ferent DLL as well). The lower left pixel in the bitmap determines the transparent color
for the icon—for example, use a yellow color for this pixel to make all other yellow
pixels in the icon transparent (so they will be shown as unavailable if your current
color setting uses gray for the control Toolbox).

The procedure to embed the bitmap in the DLL that contains the control isn’t exactly
intuitive. First, use the Add New Item command from the Project menu to add a bitmap
file to your project and name this bitmap after your control (TextBoxEx.bmp in this
example). Next, ensure that the bitmap is 16-by-16 pixels by setting its Width and
Height properties in the Properties window and draw the bitmap using your artistic
abilities and the tools that Visual Studio .NET gives you. (See Figure 18-4.) Then go to
the Solution Explorer, select the bitmap file, press F4 to display the Properties window
for the file (as opposed to the Properties window for the bitmap that you used to set
the image’s size), and change the Build Action property to Embedded Resource. If you
now recompile the CustomControlDemo.dll assembly, you’ll see that the TextBoxEx
control uses the new icon you defined. (You must use the Add/Remove Items com-
mand twice to see the new icon—once to remove the previous version and once to
add the new one.)

C18620598.fm Page 600 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 601

Notice that you haven’t used any attribute to assign the icon to the TextBoxEx because
the association is implicitly made when you assign the bitmap the same name as the
control it’s related to. This technique works only if the custom control is in the project’s
default namespace.

You can make the association explicit by using a ToolboxBitmap attribute. For exam-
ple, you need this attribute when the bitmap or icon file isn’t embedded in the DLL:

<ToolboxBitmap(“C:\CustomControlDemo\TextBoxEx.ico”)> _
Public Class TextBoxEx

§
End Class

This attribute is also useful when the bitmap is embedded in a DLL other than the one
that contains the custom control. In this case, you pass this attribute the System.Type
object that corresponds to any class defined in the DLL containing the resource (Visual
Studio .NET uses this Type object only to locate the assembly), and you can pass a sec-
ond optional argument equal to the name of the bitmap (this is necessary if the bitmap
isn’t named after the custom control):

<ToolboxBitmap(GetType(TextBoxEx), “TextBoxIcon.bmp”)> _
Public Class TextBoxEx

§
End Class

Another case for which you need the ToolboxBitmap attribute is when your control
belongs to a nested namespace below the project’s root namespace. For example, if
the TextBoxEx control lives inside the CustomControlDemo.Controls namespace, you
must rename the bitmap file as Controls.TextBoxIcon.bmp (even though you must
continue to use TextBoxIcon.bmp in the attribute’s constructor).

F18LR04.eps

Figure 18-4 The Visual Studio .NET bitmap editor

C18620598.fm Page 601 Friday, November 21, 2003 11:37 AM

602 Part IV: Win32 Applications

Working with Default Values

You have surely noticed that the Properties window uses boldface to display values dif-
ferent from the property’s default value, so you might have wondered where the
default value is defined. As you might guess, you define the default value with yet
another attribute, appropriately named DefaultValue. This example is taken from the
demo application:

Dim m_BeepOnError As Boolean = True

<Description(“If True, a beep will be emitted if validation fails”), _
DefaultValue(True)> _

Property BeepOnError() As Boolean
Get

Return m_BeepOnError
End Get
Set(ByVal Value As Boolean)

m_BeepOnError = Value
End Set

End Property

Note that the DefaultValue attribute is just a directive to the Properties window: it
doesn’t actually initialize the property itself. For that, you must use an initializer or use
the necessary code in the Sub New procedure.

Unfortunately, the DefaultValue attribute has a problem: it can take only constant val-
ues, and in several cases the default value isn’t a constant. For example, the value Sys-
temColors.ControlText, which is the initial value for the ErrorForeColor property, isn’t
a constant, so you can’t pass it to the DefaultValue attribute’s constructor. To resolve
this difficulty, the author of the custom control can create a special Resetxxxx proce-
dure, where xxxx is the property name. Here is the code in the TextBoxEx class that
the form designer implicitly calls to initialize the two color properties:

Sub ResetErrorForeColor()
ErrorForeColor = SystemColors.ControlText

End Sub

If a property is associated with a Resetxxxx method, you can reset the property by
clicking Reset on the context menu that you bring up by clicking on the property name
in the Properties window.

The DefaultValue attribute has another, less obvious, use: if a property is set to its default
value—as specified by this attribute—this property isn’t persisted, and the designer gen-
erates no code for it. This behavior is highly desirable because it avoids the generation of
a lot of useless code that would slow down the rendering of the parent form. Alas, you
can’t specify a nonconstant value, a color, a font, or another complex object in the
DefaultValue attribute. In this case, you must implement a method named

C18620598.fm Page 602 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 603

ShouldSerializexxxx (where xxxx is the name of the property) that returns True if the
property must be serialized and False if its current value is equal to its default value:

Function ShouldSerializeErrorForeColor() As Boolean
’ We can’t use the = operators on objects, so we use
’ the Equals method.
Return Not Me.ErrorForeColor.Equals(SystemColors.ControlText)

End Function

Creating Composed Multiple Controls
More complex custom controls require that you combine multiple controls. You can
think of several custom controls of this type, such as a control that implements Win-
dows Explorer–like functionality by grouping together a TreeView, a ListView, and a
Splitter control; or a control made up of two ListBox controls that lets you move items
from one ListBox to the other, using auxiliary buttons or drag-and-drop.

In this section, I build a composite custom control named FileTextBox, which lets the
user enter a filename by typing its name in a field or by selecting it in an OpenFile
common dialog box.

Creating the UserControl Component

Add a new UserControl module named FileTextBox to the CustomControlDemo project
by selecting the project and then selecting Add UserControl on the Project menu. Ensure
that you’ve selected the CustomControlDemo project before you perform this action—
otherwise, the custom control will be added to the test application instead.

The UserControl class derives from the ContainerControl class, so it can work as a con-
tainer for other controls. In this respect, the UserControl object behaves very much like
the Form object, and in fact, the programming interface of these classes is very similar,
with properties such as Font, ForeColor, AutoScroll, and so on. A few typical form
properties are missing because they don’t make sense in a control—for example, Main-
Menu and TopMost—but by and large, you code against a UserControl as if you were
working with a regular form.

You can therefore drop on the UserControl’s surface the three child controls you need
for the FileTextBox control. These are a TextBox for the filename (named txtFilename,
with a blank Text property); an OpenFileDialog control to display the dialog box
(named OpenFileDialog1); and a Button control to let the user bring up the common
dialog (named btnBrowse, with the Text property set to three dots). You can arrange
these controls in the manner of Figure 18-5. Don’t pay too much attention to their
alignment, however, because you’re going to move them on the UserControl’s surface
by means of code.

C18620598.fm Page 603 Friday, November 21, 2003 11:37 AM

604 Part IV: Win32 Applications

F18LR05.eps

Figure 18-5 The FileTextBox custom control at design time

Before you start adding code, you should compile the CustomControlDemo project to
rebuild the DLL and then switch to the client project to invoke the Customize ToolBox
command. You’ll see that the FileTextBox control doesn’t appear yet in the list of avail-
able .NET controls in the Toolbox, so you have to click on the Browse button and
select CustomControlDemo.dll once again.

If all worked well, the new FileTextBox is in the Toolbox and you can drop it on the
test form. You can resize it as usual, but its constituent controls don’t resize correctly
because you haven’t written any code that handles resizing.

Adding Properties, Methods, and Events

The FileTextBox control doesn’t expose any useful properties yet, other than those
provided by the UserControl class. The three child controls you placed on the User-
Control’s surface can’t be reached at all because by default they have a Friend scope
and can’t be seen from code in the client project. Your next step is to provide program-
matic access to the values in these controls. In most cases, all you need to do is create
a property procedure that wraps directly around a child control property—for exam-
ple, you can implement the Filename and Filter properties, as follows:

<Description(“The filename as it appears in the Textbox control”)> _
Property Filename() As String

Get
Return Me.txtFilename.Text

End Get
Set(ByVal Value As String)

Me.txtFilename.Text = Value
End Set

End Property

<Description(“The list of file filters”), _
DefaultValue(“All files (*.*)|*.*”)> _

Property Filter() As String
Get

Return OpenFileDialog1.Filter
End Get
Set(ByVal Value As String)

OpenFileDialog1.Filter = Value
End Set

End Property

C18620598.fm Page 604 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 605

If you wrap your property procedures around child control properties, you must be
certain that you properly initialize the child controls so that the initial values of their
properties match the values passed to the DefaultValue attribute. In this case, you must
ensure that you set the OpenFileDialog1.Filter property correctly.

You don’t create wrappers around child control properties only. For example, you can
implement a ShowDialog method that wraps around the OpenFileDialog1 control
method of the same name:

Function ShowDialog() As DialogResult
’ Show the OpenFile dialog, and return the result.
ShowDialog = OpenFileDialog1.ShowDialog
’ If the result is OK, assign the filename to the TextBox.
If ShowDialog = DialogResult.OK Then

txtFilename.Text = OpenFileDialog1.FileName
End If

End Function

You can also provide wrappers for events. For example, exposing the FileOk event
gives the client code the ability to reject invalid filenames:

Event FileOk(ByVal sender As Object, ByVal e As CancelEventArgs)

Private Sub OpenFileDialog1_FileOk(ByVal sender As Object, _
ByVal e As CancelEventArgs) Handles OpenFileDialog1.FileOk
RaiseEvent FileOk(Me, e)

End Sub

Bear in mind that the client will receive the event from the FileTextBox control, not
from the inner OpenFileDialog control, so you must pass Me as the first argument of
the RaiseEvent method, as in the preceding code snippet. In some cases, you also need
to change the name of the event to meet the client code’s expectations—for example,
the TextChanged event from the inner txtFilename should be exposed to the outside as
FilenameChanged because Filename is the actual property that will appear as modified
to clients. In other cases you might need to adjust the properties of the EventArgs-
derived object—for example, to convert mouse coordinates so that they refer to the
UserControl rather than the constituent control that fired the event.

Not all events should be exposed to the outside, however. The button’s Click event, for
example, is handled internally to automatically fill the txtFilename field when the user
selects a file from the common dialog box:

Private Sub btnBrowse_Click(ByVal sender As Object, _
ByVal e As EventArgs) Handles btnBrowse.Click
ShowDialog()

End Sub

C18620598.fm Page 605 Friday, November 21, 2003 11:37 AM

606 Part IV: Win32 Applications

Shadowing and Overriding UserControl Properties

If you modify the Font property of the FileTextBox control, you’ll notice that the new set-
tings are immediately applied to the inner txtFilename control, so you don’t have to man-
ually implement the Font property. The custom control behaves this way because you
never assign a specific value to txtFilename.Font, so it automatically inherits the parent
UserControl’s settings. This feature can save you a lot of code and time. The group of
properties that you shouldn’t implement explicitly includes Enabled and TabStop because
all the constituent controls inherit these properties from their UserControl container.

You’re not always that lucky. For example, TextBox controls don’t automatically inherit
the ForeColor of their container, and you have to implement this property manually. A
minor annoyance is that the UserControl already exposes a property of this name, so you
receive a compilation warning. You can get rid of this warning by using the Shadows
keyword. Note that you also must use explicit shadowing with the Resetxxxx procedure:

Shadows Property ForeColor() As Color
Get

Return txtFilename.ForeColor
End Get
Set(ByVal Value As Color)

txtFilename.ForeColor = Value
End Set

End Property

Shadows Sub ResetForeColor()
Me.ForeColor = SystemColors.ControlText

End Sub

Function ShouldSerializeForeColor() As Boolean
Return Not Me.ForeColor.Equals(SystemColors.ControlText)

End Function

If your custom control exposes a property with the same name, return type, and default
value as a property in the base UserControl, you can override it instead of shadowing it—
for example, the FileTextBox control overrides the ContextMenu property so that the
pop-up menu also appears when the end user right-clicks on constituent controls:

Overrides Property ContextMenu() As ContextMenu
Get

Return MyBase.ContextMenu
End Get
Set(ByVal Value As ContextMenu)

MyBase.ContextMenu = Value
’ Propagate the new value to constituent controls.
’ (This generic code works with any UserControl.)
For Each ctrl As Control In Me.Controls

ctrl.ContextMenu = Me.ContextMenu
Next

End Set
End Property

C18620598.fm Page 606 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 607

In many cases, however, you really have to go as far as overriding a property in the
base UserControl only if you need to cancel its default behavior. If you just want a noti-
fication that a property has changed, you can be satisfied by simply trapping the xxxx-
Changed event—for example, the following code displays the btnBrowse button
control with a flat appearance when the FileTextBox control is disabled:

Private Sub FileTextBox_EnabledChanged(ByVal sender As Object, _
ByVal e As EventArgs) Handles MyBase.EnabledChanged
If Me.Enabled Then

btnBrowse.FlatStyle = FlatStyle.Standard
Else

btnBrowse.FlatStyle = FlatStyle.Flat
End If

End Sub

Notice that xxxxChanged events don’t fire at design time, so you can’t use this method
to react to setting changes in the Properties window.

You often need to shadow properties in the base class for the sole purpose of hiding
them in the Properties window. For example, the demo FileTextBox control can’t work
as a scrollable container, so it shouldn’t display the AutoScroll, AutoScrollMargins,
AutoScrollPosition, and DockPadding items in the Properties window. You can achieve
this by shadowing the property and adding a Browsable(False) attribute:

<Browsable(False)> _
Shadows Property AutoScroll() As Boolean

Get
’ Don’t really need to delegate to inner UserControl.

End Get
Set(ByVal Value As Boolean)

’ Don’t really need to delegate to inner UserControl.
End Set

End Property

Although you can easily hide a property in the Properties window, inheritance rules
prevent you from completely wiping out a UserControl property from the custom con-
trol’s programming interface. However, you can throw an exception when this prop-
erty is accessed at run time programmatically so that the developer using this custom
control learns the lesson more quickly. You can discern whether you’re in design-time
or run-time mode with the DesignMode property, which the UserControl inherits from
the System.ComponentModel.Component object:

<Browsable(False)> _
Shadows Property AutoScroll() As Boolean

Get
If Not Me.DesignMode Then Throw New NotImplementedException()

End Get
Set(ByVal Value As Boolean)

If Not Me.DesignMode Then Throw New NotImplementedException()
End Set

End Property

C18620598.fm Page 607 Friday, November 21, 2003 11:37 AM

608 Part IV: Win32 Applications

You must check the DesignMode property before throwing the exception—otherwise,
the control doesn’t work correctly in design-time mode. You can use this property for
many other purposes, such as displaying a slightly different user interface at design
time or run time.

Adding Resize Logic

The code inside your UserControl determines how its constituent controls are arranged
when the control is resized. In the simplest cases, you don’t have to write code to
achieve the desired effect because you can simply rely on the Anchor and Dock prop-
erties of constituent controls. However, this approach is rarely feasible with more com-
plex custom controls. For example, the btnBrowse button in FileTextBox always
should be square, and so its height and width depend on the txtFilename control’s
height, which in turn depends on the current font. Besides, the height of the FileText-
Box control always should be equal to the height of its inner fields. All these con-
straints require that you write custom resize logic in a private RedrawControls
procedure and call this procedure from the UserControl’s Resize event:

Private Sub FileTextBox_Resize(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles MyBase.Resize
RedrawControls()

End Sub

Private Sub RedrawControls()
’ This is the inner width of the control.
Dim width As Integer = Me.ClientRectangle.Width
’ This is the (desired) height of the control.
Dim btnSide As Integer = txtFilename.Height

’ Adjust the height of the UserControl if necessary.
If Me.ClientRectangle.Height <> btnSide Then

’ Resize the UserControl.
Me.SetClientSizeCore(Me.ClientRectangle.Width, btnSide)
’ The above statement fires a nested Resize event, so exit right now.
Exit Sub

End If

’ Resize the constituent controls.
txtFilename.SetBounds(0, 0, width - btnSide, btnSide)
btnBrowse.SetBounds(width - btnSide, 0, btnSide, btnSide)

End Sub

Don’t forget that the custom control’s height also should change when its Font property
changes, so you must override the OnFontChanged method as well. (You can’t simply
trap the FontChanged event because it doesn’t fire at design time.)

Protected Overrides Sub OnFontChanged(ByVal e As EventArgs)
’ Let the base control update the TextBox control.
MyBase.OnFontChanged(e)
’ Now we can redraw controls if necessary.
RedrawControls()

End Sub

C18620598.fm Page 608 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 609

Creating a Control from Scratch
The third technique for creating a custom control is building it from scratch by inher-
iting from the Control class and painting directly on its surface using graphic methods
in the GDI+ package. In general, it’s a more complex approach than the other two
techniques shown so far.

In this section, I’ll illustrate a relatively simple example: a custom control named Gra-
dientControl that can be used to provide a gradient background for other controls.
Figure 18-6 shows this control at design time, but most of the time you’ll set its Docked
property to Fill so that it spreads over the entire form. This control has only three prop-
erties: StartColor, EndColor, and GradientMode. This is the complete source code for
this control:

Public Class GradientBackground
Inherits System.Windows.Forms.Control

’ The StartColor property
Dim m_StartColor As Color = Color.Blue

<Description(“The start color for the gradient”)> _
Property StartColor() As Color

Get
Return m_StartColor

End Get
Set(ByVal Value As Color)

m_StartColor = Value
’ Redraw the control when this property changes.
Me.Invalidate()

End Set
End Property

Sub ResetStartColor()
m_StartColor = Color.Blue

End Sub

Function ShouldSerializeStartColor() As Boolean
Return Not m_StartColor.Equals(Color.Blue)

End Function

’ The EndColor property
Dim m_EndColor As Color = Color.Black

<Description(“The end color for the gradient”)> _
Property EndColor() As Color

Get
Return m_EndColor

End Get
Set(ByVal Value As Color)

m_EndColor = Value
’ Redraw the control when this property changes.
Me.Invalidate()

End Set
End Property

C18620598.fm Page 609 Friday, November 21, 2003 11:37 AM

610 Part IV: Win32 Applications

Sub ResetEndColor()
m_EndColor = Color.Black

End Sub

Function ShouldSerializeEndColor() As Boolean
Return Not m_EndColor.Equals(Color.Black)

End Function

’ The GradientMode property
Dim m_GradientMode As LinearGradientMode = _

LinearGradientMode.ForwardDiagonal

<Description(“The gradient mode”), _
DefaultValue(LinearGradientMode.ForwardDiagonal)> _

Property GradientMode() As LinearGradientMode
Get

Return m_GradientMode
End Get
Set(ByVal Value As LinearGradientMode)

m_GradientMode = Value
’ Redraw the control when this property changes.
Me.Invalidate()

End Set
End Property

’ Render the control background.

Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)
’ Create a gradient brush as large as the client area, with specified
’ start/end color and gradient mode.
Dim br As New LinearGradientBrush(Me.ClientRectangle, _

m_StartColor, m_EndColor, m_GradientMode)
’ Paint the background and destroy the brush.
e.Graphics.FillRectangle(br, Me.ClientRectangle)
br.Dispose()
’ Let the base control do its chores (e.g., raising the Paint event).
MyBase.OnPaint(e)

End Sub

Private Sub GradientBackground_Resize(ByVal sender As Object, _
ByVal e As EventArgs) Handles MyBase.Resize
Me.Invalidate()

End Sub
End Class

A custom control implemented by inheriting from the Control class must render itself
in the overridden OnPaint method. In this particular case, redrawing the control is triv-
ial because the System.Drawing.Drawing2d namespace exposes a LinearGradientBrush
object that does all the work for you. In practice, for this particular control you only
have to create a gradient brush as large as the control itself and then use this brush to
paint the control’s client rectangle. The last argument you pass to the brush’s construc-
tor is the gradient mode, an enumerated value that lets you create horizontal, vertical,
forward diagonal (default), and backward diagonal gradients. The GradientMode prop-

C18620598.fm Page 610 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 611

erty is opportunely defined as type LinearGradientMode so that these four gradients
appear in a drop-down list box in the Properties window.

F18LR06.eps

Figure 18-6 You can use the GradientControl to create eye-catching backgrounds
by setting just three properties.

The only other detail to take care of is refreshing the control whenever a property
changes. The best way to do so is by invalidating the control appearance with its Inval-
idate method so that the form engine can refresh the control at the first occurrence.
This is considered a better practice than invoking the Refresh method directly because
the form engine can delay all repaint operations until it’s appropriate to perform them.

The ControlPaint Class

You might find the ControlPaint class especially useful when creating the user interface
of your custom control. This class, in the System.Windows.Forms namespace, exposes
shared methods for performing common graphic chores—for example, you can use
the DrawFocusRectangle method for drawing the dotted rectangle around your control
when it gets the focus:

Private Sub GradientBackground_GotFocus(ByVal sender As Object, _
ByVal e As EventArgs) _
Handles MyBase.GotFocus
Dim gr As Graphics = Me.CreateGraphics
ControlPaint.DrawFocusRectangle(gr, Me.Bounds)
gr.Dispose()

End Sub

Other methods in the ControlPaint class can draw a border (DrawBorder), a three-
dimensional border (DrawBorder3D), a button (DrawButton), a standard check box
(DrawCheckBox), a three-state check box (DrawMixedCheckBox), a radio button
(DrawRadioButton), a scroll bar button (DrawScrollButton), a combo box button
(DrawComboButton), a disabled (grayed) string (DrawStringDisabled), and an image

C18620598.fm Page 611 Friday, November 21, 2003 11:37 AM

612 Part IV: Win32 Applications

in disabled state (DrawImageDisabled). All these borders and buttons can be rendered
in normal, checked, flat, pushed, and inactive states. (See Figure 18-7.)

The DrawReversibleLine method draws a line in such a way that you can make the line
disappear if you invoke the method again. The DrawReversibleFrame and FillRevers-
ibleRectangle methods do the same, but draw an empty and a filled rectangle, respec-
tively. You can use these methods to implement “rubber band” techniques—for
example, to let users draw lines and rectangles with the mouse. (Notice that you can’t
implement rubber banding with GDI+ methods because GDI+ doesn’t support XOR
drawing. For drawing any shape other than a line and a rectangle in rubber-banding
mode, you must call the native Windows GDI functions though PInvoke.)

F18LR07.eps

Figure 18-7 The demo application lets you preview the effect you can achieve
by invoking some of the methods in the ControlPaint class.

Advanced Topics
Windows Forms control creation is a complex topic, and I don’t have enough space to
cover every detail. But what you learned in previous chapters and the techniques I’ll
cover in this section are more than sufficient to enable you to author useful and com-
plex controls with relatively little effort.

The ISupportInitialize Interface

If you create a control or a component that is meant to interact with other controls on
the form, you might have the following problem: the control hasn’t been sited on the
form’s surface when its constructor method runs, so you can’t reference the Container
property from inside that method. And even if you could, your code couldn’t see any
controls that are added to the form after it.

C18620598.fm Page 612 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 613

You can easily solve these and other similar problems simply by having your control or
component expose the System.ComponentModel.SupportInitialize interface. When
Visual Studio .NET adds your control to the form, it will invoke the ISupportInitial-
ize.BeginInit method before any control is added to the form, and the ISupportInitial-
ize.EndInit method after all controls have been added to the form. Several built-in
controls expose this interface, including the DataGrid, Timer, and NumericUpDown
controls, and the DataSet, DataTable, and FileSystemWatcher components—for exam-
ple, look at the code that Visual Studio .NET generates when you drop a DataGrid con-
trol on a form’s surface:

<System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()
Me.TextBox1 = New System.Windows.Forms.TextBox
Me.DataGrid1 = New System.Windows.Forms.DataGrid
CType(Me.DataGrid1, ISupportInitialize).BeginInit()
Me.SuspendLayout()
’ ...(Assign properties of all the controls and the form itself)...
§
’ ...(Add controls to the parent form)...
Me.Controls.Add(Me.TextBox1)
Me.Controls.Add(Me.DataGrid1)
CType(Me.DataGrid1, ISupportInitialize).EndInit()
Me.ResumeLayout(False)

End Sub

Here’s how this interface looks when implemented in a component:

Public Sub BeginInit() Implements ISupportInitialize.BeginInit
’ Code that runs before any other control is hosted on the form.

End Sub

Public Sub EndInit() Implements ISupportInitialize.EndInit
’ Code that runs after any other control is hosted on the form.

End Sub

Multithreaded Controls

Creating a multithreaded control class isn’t different from creating a new thread in a
regular application, and you have several options: you can create a new Thread object,
use a thread from the thread pool, or just use asynchronous method invocation.
(Threading is covered in Chapter 12.) The only potential glitch you should watch for is
that the control you create—whether it’s inherited from a Control, a UserControl, or
another control—must be accessed exclusively from the thread that created it. In fact,
all the Windows Forms controls rely on the single-threaded apartment (STA) model
because windows and controls are based on the Win32 message architecture, which is
inherently apartment-threaded. This means that a control (or a form, for that matter)
can be created on any thread, but all the methods of the control must be called from
the thread that created the control. This constraint can create a serious problem
because other .NET portions use the free-threading model, and carelessly mixing the
two models isn’t a wise idea.

C18620598.fm Page 613 Friday, November 21, 2003 11:37 AM

614 Part IV: Win32 Applications

The only methods that you can call on a control object from another thread are Invoke,
BeginInvoke, and EndInvoke. You already know from Chapter 12 how to use the latter
two methods for calling a method asynchronously, so in this section I’ll focus on the
Invoke method exclusively. This method takes a delegate pointing to a method (Sub or
Function) and can take an Object array as a second argument if the method expects
one or more arguments.

To illustrate how to use this method, I’ve prepared a CountdownLabel control, which
continuously displays the number of seconds left until the countdown expires. (See
Figure 18-8.) The code that updates the Label runs on another thread. You start the
countdown by using the StartCountdown method, and you can stop it before the end
by using the StopCountdown method.

F18LR08.eps

Figure 18-8 A form with four CountdownLabel instances

Here are the steps you must take to correctly implement multithreading in a control:

1. Define a private method that operates on the control or its properties. This method
runs in the control’s main thread and can therefore access all the control’s mem-
bers. In the sample control, this method is named SetText and takes the string to
be displayed in the Label control.

2. Declare a delegate patterned after the method defined in step 1; in the sample
control, this is called SetTextDelegate.

3. Declare a delegate variable and make it point to the method defined in step 1; this
value is passed to the Invoke method. In the sample control, this variable is
named SetTextMarshaler: the name comes from the fact that this delegate actually
marshals data from the new thread to the control’s main thread.

4. Create a method that spawns the new thread using one of the techniques described
in Chapter 12. For simplicity’s sake, the sample application uses the Thread object;
in the sample control, this task is performed by the StartCountdown method.

C18620598.fm Page 614 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 615

Here’s the complete listing of the CountdownLabel control:

Public Class CountdownLabel
Inherits System.Windows.Forms.Label

’ A delegate that points to the SetText procedure
Delegate Sub SetTextDelegate(ByVal Text As String)
’ An instance of this delegate that points to the SetText procedure
Dim SetTextMarshaler As SetTextDelegate = AddressOf Me.SetText
’ The internal counter for number of seconds left
Dim secondsLeft As Integer
’ The end time for countdown
Dim endTime As Date
’ The thread object: if Nothing, no other thread is running.
Dim thr As Thread

Sub StartCountdown(ByVal seconds As Integer)
’ Wait until all variables can be accessed safely.
SyncLock Me

’ Save values where the other thread can access them.
secondsLeft = seconds
endTime = Now.AddSeconds(seconds)

’ Create a new thread, and run the procedure on that thread
’ only if the thread isn’t running already.
If (thr Is Nothing) Then

thr = New Thread(AddressOf CountProc)
thr.Start()

End If
End SyncLock

’ Display the initial value in the label.
SetText(CStr(seconds))

End Sub

Sub StopCountdown()
SyncLock Me

’ This statement implicitly causes CountProc to exit.
endTime = Now

End SyncLock
End Sub

’ This procedure is just a wrapper for a simple property set and runs
’ on the control’s creation thread. The other thread(s) must call it
’ through the control’s Invoke method.
Private Sub SetText(ByVal Text As String)

Me.Text = Text
End Sub

’ This procedure runs on another thread.
Private Sub CountProc()

Do
’ Ensure that this is the only thread that is accessing variables.
SyncLock Me

C18620598.fm Page 615 Friday, November 21, 2003 11:37 AM

616 Part IV: Win32 Applications

’ Calculate the number of seconds left.
Dim secs As Integer = CInt(endTime.Subtract(Now).TotalSeconds)
’ If different from current value, update the Text property.
If secs <> secondsLeft Then

’ Never display negative numbers.
secondsLeft = Math.Max(secs, 0)
’ Arguments must be passed in an Object array.
Dim args() As Object = {CStr(secondsLeft)}
’ Update the Text property with current number of seconds.
MyBase.Invoke(SetTextMarshaler, args)

’ Terminate the thread if countdown is over.
If secondsLeft <= 0 Then

’ Signal that no thread is running, and exit.
thr = Nothing
Exit Do

End If
End If

End SyncLock
’ Wait for 100 milliseconds.
Thread.Sleep(100)

Loop
End Sub

End Class

As usual in multithreaded applications, you must pay a lot of attention to how you
access variables shared among threads to prevent your control from randomly crashing
after hours of testing. Other problems can arise if the user closes the form while the
other thread is running because this extra thread attempts to access a control that no
longer exists and would prevent the application from shutting down correctly. You can
work around this obstacle by killing the other thread when the control is being
destroyed, which you do by overriding the OnHandleDestroyed method:

’ Kill the other thread if the control is being destroyed.
Protected Overrides Sub OnHandleDestroyed(ByVal e As EventArgs)

SyncLock Me
If Not (thr Is Nothing) AndAlso thr.IsAlive Then

thr.Abort()
thr.Join()

End If
End SyncLock
MyBase.OnHandleDestroyed(e)

End Sub

Remember that you can’t use the RaiseEvent statement from another thread. To have
the CountdownLabel control fire an event when the countdown is complete, you must
adopt the same technique described previously. You must create a method that calls
RaiseEvent and runs on the main thread, define a delegate that points to it, and use
Invoke from the other thread when you want to raise the event.

The techniques described in this section should be used whenever you access a Win-
dows Forms control from another thread and not just when you’re creating a custom
control. If you are unsure whether you must use the Invoke method on a control (in

C18620598.fm Page 616 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 617

other words, you don’t know whether your code is running in the same thread as the
control), just check the InvokeRequired read-only property. If it returns True, you must
use the technique described in this section.

Extender Provider Controls

You can create property extender controls similar to those provided with the Windows
Forms package, such as ToolTip and HelpProvider. In this section, I’ll guide you
through the creation of a component named UserPropExtender, which adds a property
named UserRole to all the visible controls on the form. The developer can assign a user
role to this list, or even a semicolon-separated list of roles, such as Manager;Accoun-
tants. At run time, the UserPropExtender control makes invisible those controls that are
associated with a user role different from the current role (information that you assign
to the UserPropExtender control’s CurrentUserRole property). Thanks to the User-
PropExtender control, you can provide different control layouts for different user roles
without writing any code. Here are the steps you must follow when creating an
extender provider control:

1. You define a class for your extender provider, making it inherit from System.Win-
dows.Forms.Control (if the new control has a user interface) or from System.Com-
ponentModel.Component (if the new control isn’t visible at run time and should
be displayed in the component tray of the form designer).

2. Associate a ProvideProperty attribute with the class you created in the preceding
step. The constructor for this attribute takes the name of the property that’s added
to all the controls on the form and a second System.Type argument that defines
which type of objects can be extended by this extender provider. In this example,
the new property is named UserList and can be applied to Control objects.

3. All extender providers must implement the IExtenderProvider interface, so you
must add a suitable Implements statement. This interface has only one method,
CanExtend, which receives an Object and is expected to return True if that object
can be extended with the new property. The code in the sample control returns
True for all control classes except the Form class.

4. Declare and initialize a class-level Hashtable object that stores the value of the User-
Name property for all the controls on the form, where the control itself is used as a
key in the Hashtable. In the sample project, this collection is named userListValues.

5. Define two methods, Getxxxx and Setxxxx, where xxxx is the name of the prop-
erty that the extender provider adds to all other controls. (These methods are
named GetUserName and SetUserName in the sample control.) These methods
can read and write values in the Hashtable defined in the preceding step and
modify the control’s user interface as necessary. (The Setxxxx method is invoked
from the code automatically generated by the form designer.)

C18620598.fm Page 617 Friday, November 21, 2003 11:37 AM

618 Part IV: Win32 Applications

Armed with this knowledge, you should be able to decode the complete listing for the
UserPropExtender component quite easily:

‘ Let the form know that this control will add the UserRole property.
<ProvideProperty(“UserRole", GetType(Control))> _
Public Class UserPropExtender

Inherits Component
Implements IExtenderProvider

’ Return True for all controls that can be extended with
’ the UserRole property.
Public Function CanExtend(ByVal extendee As Object) As Boolean _

Implements IExtenderProvider.CanExtend
’ Extend all controls but not forms.
If Not (TypeOf extendee Is Form) Then

Return True
End If

End Function

’ The Hashtable object that associates controls with their UserRole
Dim userRoleValues As New Hashtable()

’ These are the Get/Set methods related to the property being added.

Function GetUserRole(ByVal ctrl As Control) As String
’ Check whether a property is associated with this control.
Dim value As Object = userRoleValues(ctrl)
’ Return the value found or an empty string.
If value Is Nothing Then value = “"
Return value.ToString

End Function

Sub SetUserRole(ByVal ctrl As Control, ByVal value As String)
’ In case Nothing is passed
If Value Is Nothing Then Value = “"
If Value.Length = 0 And userRoleValues.Contains(ctrl) Then

’ Remove the control from the hash table.
userRoleValues.Remove(ctrl)
’ Remove event handlers, if any (none in this example).
§

ElseIf Value.Length > 0 Then
If Not userRoleValues.Contains(ctrl) Then

’ Add event handlers here (none in this example).
§

End If
’ Assign the new value, and refresh the control.
userRoleValues.Item(ctrl) = Value
SetControlVisibility(ctrl)

End If
End Sub

’ This property is assigned the name of the current user.
Dim m_CurrentUserRole As String

C18620598.fm Page 618 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 619

Property CurrentUserRole() As String
Get

Return m_CurrentUserRole
End Get
Set(ByVal Value As String)

m_CurrentUserRole = Value
RefreshAllControls() ’ Redraw all controls.

End Set
End Property

’ Hide/show all controls based on their UserRole property.
Sub RefreshAllControls()

For Each ctrl As Control In userRoleValues.Keys
SetControlVisibility(ctrl)

Next
End Sub

’ Hide/show a single control based on its UserRole property.
Private Sub SetControlVisibility(ByVal ctrl As Control)

’ Do nothing if no current role or control isn’t in the hash table.
If CurrentUserRole = ““ Then Exit Sub
If Not userRoleValues.Contains(ctrl) Then Exit Sub

’ Get the value in the hash table.
Dim value As String = userRoleValues(ctrl).ToString
’ Check whether current role is among the role(s) defined
’ for this control.
If InStr(“;” & value & “;", “;” & CurrentUserRole & “;", _

CompareMethod.Text) > 0 Then
ctrl.Visible = True

Else
ctrl.Visible = False

End If
End Sub

End Class

The UserPropExtender control is fully functional and uses many of the techniques you
should know about when writing extender providers. But because of its simplicity, it
doesn’t need to trap events coming from other controls on the form, which is often a
requirement for extender providers. For example, the ToolTip control intercepts mouse
events for all controls that have a nonempty ToolTip property, and the HelpProvider con-
trol intercepts the HelpRequested event to display the associated help page or string.

Intercepting events from controls isn’t difficult; however, when the control is added
to the Hashtable (typically in the Setxxxx method), you use the AddHandler com-
mand to have one of its events trapped by a local procedure, and you use Remove-
Handler to remove the event added dynamically when the control is removed from
the Hashtable. Remarks in the preceding listing clearly show where these statements
should be inserted.

C18620598.fm Page 619 Friday, November 21, 2003 11:37 AM

620 Part IV: Win32 Applications

Custom Property Editors

If you’re familiar with custom control authoring under Visual Basic 6, you might have
noticed that I haven’t mentioned property pages, either when describing built-in con-
trols or in this section devoted to custom control creation. Property pages aren’t sup-
ported in the .NET architecture and have been replaced by custom property editors.

The most common form of property editor displays a Windows Forms control in a
drop-down area inside the Properties window. You can display any control in the
drop-down area, such as a TrackBar, a ListBox, or even a complex control such as a
TreeView or a DataGrid, but the limitation is that you can display only one control. If
you want to display more controls, you’ll have to create a custom control with multiple
child controls for the sole purpose of using it in the drop-down area—for example, the
editors used by Anchor and Dock properties work in this way.

The Windows Form designer also supports property editors that display modal forms.
Because you’re in charge of drawing the appearance of such modal forms, you can dis-
play tab pages and multiple controls, and even modify more than one property. For
example, you can add OK, Cancel, and Apply buttons and have a Visual Basic 6–like
property page. Because these forms are modal, the Property window should be
updated only when the user closes them, but you can offer a preview of what the cus-
tom control being edited will look like when the property or properties are assigned.
As a matter of fact, it’s perfectly legal to use your custom control inside the property
editor you create for one of its properties, regardless of whether these editors use the
drop-down area or a modal form.

Implementing a custom property editor isn’t simple. Worse, the MSDN documentation
is less than perfect—to use a euphemism—so I had to dig deep in the samples pro-
vided with the .NET Framework and use some imagination. The companion source
code with this book includes a GradientBackgroundEx control that extends Gradient-
Background with a new RotateAngle property, which permits you to rotate the gradient
brush. (I have purposely chosen to extend an existing control so that I don’t need to
lead you through all the steps necessary to create a brand-new custom control.) The
new property is associated with a custom property editor that uses a TrackBar control
in a drop-down area of the Properties window to let the user select the angle with the
mouse. Thanks to inheritance, the code for the GradientBackgroundEx control is con-
cise and includes only the new Property procedure and a redefined OnPaint proce-
dure, which differs from the original OnPaint procedure by one statement only, here
shown in boldface:

Public Class GradientBackgroundEx
Inherits GradientBackground

Dim m_RotateAngle As Single

C18620598.fm Page 620 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 621

<Description(“The rotation angle for the brush”), DefaultValue(0)> _
Property RotateAngle() As Single

Get
Return m_RotateAngle

End Get
Set(ByVal Value As Single)

m_RotateAngle = Value
Me.Invalidate()

End Set
End Property

’ Redefine the OnPaint event to account for the new property.
Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)

’ Create a gradient brush as large as the client area, with specified
’ start/end color and gradient mode.
Dim br As New LinearGradientBrush(Me.ClientRectangle, _

Me.StartColor, Me.EndColor, Me.GradientMode)
’ Apply the rotation angle.
br.RotateTransform(Me.RotateAngle)
’ Paint the background and destroy the brush.
e.Graphics.FillRectangle(br, Me.ClientRectangle)
br.Dispose()
’ Let the base control do its chores (e.g., raising the Paint event).
MyBase.OnPaint(e)

End Sub
End Class

The first step in defining a custom editor for a given property is to specify the editor
itself in the Editor attribute associated with the property procedure itself. The editor
we’re going to create is named RotateAngleEditor, so the new version of the RotateAn-
gle Property procedure becomes:

<Description(“The rotation angle for the brush”), DefaultValue(0), _
Editor(GetType(RotateAngleEditor), GetType(UITypeEditor))> _

Property RotateAngle() As Single
§

End Property

Note that the attribute’s constructor takes two System.Type arguments, so you must use
the GetType function. The second argument is always GetType(UITypeEditor).

The property editor is a class that you define. If you don’t plan to reuse this property
editor for other custom controls, you can avoid namespace pollution by making the
editor a nested class of the custom control class.

The property editor class inherits from System.Drawing.Design.UITypeEditor and must
override two methods in its base class, GetEditStyle and EditValue. The form designer calls
the GetEditStyle method when it’s filling the Properties window with the values of all the
properties of the control currently selected. This method must return an enumerated value
that tells the designer whether your property editor is going to display a single control in
a drop-down area or a modal form. In the former case, a down-arrow button is displayed
near the property name; in the latter case, a button with an ellipsis is used instead.

C18620598.fm Page 621 Friday, November 21, 2003 11:37 AM

622 Part IV: Win32 Applications

The form designer calls the EditValue method when the user clicks the button beside
the property name. This method is overloaded, but we don’t have to override all the
overloaded versions of the method. In the most general overloaded version—the only
one I override in the demo program—this method receives three arguments:

■ The first argument is an ITypeDescriptorContext type that can provide additional
information about the context in which the editing action is being performed—for
example, Context.Instance returns a reference to the control whose property is
being edited, and Context.Container returns a reference to the control’s container.

■ The second argument is an IServiceProvider type. You can query the GetService
method of this object to get the editor service object that represents the properties
editor; this is an IWindowsFormEditorService object that exposes the three meth-
ods that let you open the drop-down area (DropDownControl), close it (Close-
DropDown), or display a modal form (ShowDialog).

■ The third argument is the current value of the property being edited. You should
use this value to correctly initialize the control about to appear in the drop-down
area (or the controls on the modal form). The EditValue method is expected to
return the new value of the property being edited.

Here’s the complete listing of the RotateAngleEditor class. Its many remarks and the
details already given should suffice for you to understand how it works:

Class RotateAngleEditor
Inherits UITypeEditor

’ Override the GetEditStyle method to tell that this editor supports
’ the DropDown style.
Overloads Overrides Function GetEditStyle(_

ByVal context As ITypeDescriptorContext) As UITypeEditorEditStyle
If Not (context Is Nothing) AndAlso _

Not (context.Instance Is Nothing) Then
’ Return DropDown if you have a context and a control instance.
Return UITypeEditorEditStyle.DropDown

Else
’ Otherwise, return the default behavior, whatever it is.
Return MyBase.GetEditStyle(context)

End If
End Function

’ This is the TrackBar control that is displayed in the editor.
Dim WithEvents tb As TrackBar
’ This the editor service that creates the drop-down area
’ or shows a dialog.
Dim wfes As IWindowsFormsEditorService

C18620598.fm Page 622 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 623

’ Override the EditValue function,
’ and return the new value of the property.
Overloads Overrides Function EditValue(_

ByVal context As ITypeDescriptorContext, _
ByVal provider As IServiceProvider, _
ByVal value As Object) As Object

’ Exit if no context, instance, or provider is provided.
If (context Is Nothing) OrElse (context.Instance Is Nothing) _

OrElse (provider Is Nothing) Then
Return value

End If
’ Get the Editor Service object; exit if not there.
wfes = CType(provider.GetService(_

GetType(IWindowsFormsEditorService)), IWindowsFormsEditorService)
If (wfes Is Nothing) Then Return value

’ Create the TrackBar control, and set its properties.
tb = New TrackBar()
’ Always set Orientation before Size property.
tb.Orientation = Orientation.Vertical
tb.Size = New Size(50, 150)
tb.TickStyle = TickStyle.TopLeft
tb.TickFrequency = 45
tb.SetRange(0, 360)
’ Initalize its Value property.
tb.Value = CInt(value)

’ Show the control. (It returns when the drop-down area is closed.)
wfes.DropDownControl(tb)
’ The return value must be of the correct type.
EditValue = CSng(tb.Value)
’ Destroy the TrackBar control.
tb.Dispose()
tb = Nothing

End Function

’ Close the drop-down area when the mouse button is released.
Private Sub TB_MouseUp(ByVal sender As Object, _

ByVal e As MouseEventArgs) Handles tb.MouseUp
If Not (wfes Is Nothing) Then

wfes.CloseDropDown()
End If

End Sub
End Class

The RotateAngleEditor class automatically closes the drop-down area when the user
releases the mouse button, but this isn’t strictly necessary because the Properties win-
dow closes the drop-down area when the user clicks somewhere else. I implemented
this detail only to show you how you can react to user selections in the drop-down
area. Figure 18-9 shows the new property editor in action.

C18620598.fm Page 623 Friday, November 21, 2003 11:37 AM

624 Part IV: Win32 Applications

F17LR09.eps

Figure 18-9 The RotateAngle property of a GradientBackgroundEx control is being edited
with a custom property editor.

The steps you must take to display a modal form instead of the drop-down area are the
same as those you’ve seen so far, with only two differences:

■ The GetEditStyle method must return the UITypeEditorEditStyle.Modal value to let
the Property window know that an ellipsis button must be displayed beside the
property name.

■ Your class library project must contain a form class in which you drop the controls
that make up the editor interface. In the EditValue method, you create an instance
of this form and pass it to the ShowModal method of the IWindowsFormsEdi-
torService object (instead of the DropDownControl method, as in the preceding
code example).

Custom property editors provide support for one more feature: the ability to offer the
visual representation of the current value in the Properties window in a small rectangle
to the left of the actual numeric or string value. (You can see how the form designer
uses such rectangles for the ForeColor, BackColor, and BackgroundImage properties.)
In this case, you must override two more methods of the base UITypeEditor class: Get-
PaintValueSupported (which should return True if you want to implement this feature)
and PaintValue (where you place the code that actually draws inside the small rectan-
gle). The latter method receives a PaintValueEventArgs object, whose properties give
you access to the Graphics object on which you can draw, the bounding rectangle, and
the value to be printed. The following code extends the RotateAngleEditor class with
the ability to display a small yellow circle, plus a black line that shows the current
value of the RotateAngle property in a visual manner:

‘ Let the property editor know that we want to paint the value.
Overloads Overrides Function GetPaintValueSupported(_

ByVal context As ITypeDescriptorContext) As Boolean

C18620598.fm Page 624 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 625

’ In this demo, we return True regardless of the actual editor.
Return True

End Function

‘ Display a yellow circle to the left of the value in the Properties window
‘ with a line forming the same angle as the value of the RotateAngle property.
Overloads Overrides Sub PaintValue(ByVal e As PaintValueEventArgs)

’ Get the angle in radians.
Dim a As Single = CSng(e.Value) * CSng(Math.PI) / 180!
’ Get the rectangle in which we can draw.
Dim rect As Rectangle = e.Bounds
’ Evaluate the radius of the circle.
Dim r As Single = Math.Min(rect.Width, rect.Height) / 2!
’ Get the center point.
Dim p1 As New PointF(rect.Width / 2!, rect.Height / 2!)
’ Calculate where the line should end.
Dim p2 As New PointF(CSng(p1.X + Math.Cos(a) * r), _

CSng(p1.Y + Math.Sin(a) * r))
’ Draw the yellow-filled circle.
e.Graphics.FillEllipse(Brushes.Yellow, rect.Width / 2! - r, _

rect.Height / 2! - r, r * 2, r * 2)
’ Draw the line.
e.Graphics.DrawLine(Pens.Black, p1, p2)

End Sub

You can see the effect in Figure 18-9.

Object Properties

A few common properties, such as Font and Location, return objects instead of scalar
values. These properties are displayed in the Properties window with a plus sign (+) to
the left of each of their names so that you can expand those items to edit the individual
properties of the object. If you implement properties that return objects defined in the
.NET Framework (such as Font, Point, and Size objects), your control automatically
inherits this behavior. However, when your control exposes an object defined in your
application, you must implement a custom TypeConverter class to enable this feature.

The companion source code includes an AddressControl custom control, which lets the
user enter information such as street, city, postal code, state, and country. (See the
form on the left in Figure 18-10.) Instead of exposing this data as five independent
properties, this control exposes them as a single Address object, which is defined in the
same application:

Public Class Address
’ This event fires when a property is changed.
Event PropertyChanged(ByVal propertyName As String)

’ Private members
Dim m_Street As String
Dim m_City As String
Dim m_Zip As String
Dim m_State As String
Dim m_Country As String

C18620598.fm Page 625 Friday, November 21, 2003 11:37 AM

626 Part IV: Win32 Applications

Property Street() As String
Get

Return m_Street
End Get
Set(ByVal Value As String)

If m_Street <> Value Then
m_Street = Value
RaiseEvent PropertyChanged(“Street”)

End If
End Set

End Property

’ ...(Property procedures for City, Zip, State, and Country
’ omitted because substantially identical to Street property)...
§

Overrides Function ToString() As String
Return “(Address)"

End Function
End Class

Note that property procedures in the Address class are just wrappers for the five private
variables and that they raise a PropertyChanged event when any property changes.
The ToString method is overridden to provide the text that will appear as a dummy
value for the Address property in the Properties window. The AddressControl control
has an Address property that returns an Address object:

Public Class AddressControl
Inherits System.Windows.Forms.UserControl

#Region “ Windows Form Designer generated code “
§

#End Region

Dim WithEvents m_Address As New Address()

<TypeConverter(GetType(AddressTypeConverter)), _
DesignerSerializationVisibility(DesignerSerializationVisibility.Content)> _

Property Address() As Address
Get

Return m_Address
End Get
Set(ByVal Value As Address)

m_Address = Value
RefreshControls()

End Set
End Property

’ Refresh controls when any property changes.
Private Sub Address_PropertyChanged(ByVal propertyName As String) _

Handles m_Address.PropertyChanged
RefreshControls()

End Sub

C18620598.fm Page 626 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 627

’ Display Address properties in the control’s fields.
Private Sub RefreshControls()

txtStreet.Text = m_Address.Street
txtCity.Text = m_Address.City
txtZip.Text = m_Address.Zip
txtState.Text = m_Address.State
txtCountry.Text = m_Address.Country

End Sub

’ Update a member property when user updates a field.
Private Sub Controls_TextChanged(ByVal sender As Object, _
ByVal e As EventArgs) Handles txtStreet.TextChanged, txtCity.TextChanged, _

txtZip.TextChanged, txtState.TextChanged, txtCountry.TextChanged
Dim Text As String = DirectCast(sender, Control).Text
If sender Is txtStreet Then

m_Address.Street = Text
ElseIf sender Is txtCity Then

m_Address.City = Text
ElseIf sender Is txtZip Then

m_Address.Zip = Text
ElseIf sender Is txtState Then

m_Address.State = Text
ElseIf sender Is txtCountry Then

m_Address.Country = Text
End If

End Sub
End Class

The key statement in the preceding code is the TypeConverter attribute, which tells the
form designer that a custom TypeConverter object is associated with the Address prop-
erty. Or you can associate this attribute with the Address class itself, in which case all the
controls that expose a property of type Address will automatically use the AddressType-
Converter class. (The .NET Framework uses this approach for classes such as Point and
Font.) The DesignerSerializationVisibility attribute, which is also assigned to the Address
property, tells Visual Studio .NET that it must serialize each and every property of the
Address object when it generates the source code for initializing this object.

The AddressTypeConverter class derives from TypeConverter and overrides two meth-
ods. The GetPropertiesSupported method must return True to let the editor know that
a plus symbol must be displayed to the left of the Address property in the Properties
window; the GetProperties method must return a PropertyDescriptorCollection object,
which describes the items that will appear when the plus symbol is clicked:

‘ The TypeConverter class for the Address property
‘ (It can be a nested class of AddressControl.)

Public Class AddressTypeConverter
Inherits TypeConverter

Overloads Overrides Function GetPropertiesSupported(_
ByVal context As ITypeDescriptorContext) As Boolean
’ Tell the editor to display a + symbol near the property name.

C18620598.fm Page 627 Friday, November 21, 2003 11:37 AM

628 Part IV: Win32 Applications

Return True
End Function

Overloads Overrides Function GetProperties(_
ByVal context As ITypeDescriptorContext, ByVal value As Object, _
ByVal attributes() As Attribute) As PropertyDescriptorCollection

’ Use the GetProperties shared method to return a collection of
’ PropertyDescriptor objects, one for each property of Address.
Return TypeDescriptor.GetProperties(GetType(Address))

End Function
End Class

You see the effect of this custom TypeConverter class in the right portion of Figure 18-10.

F17LR10.eps

Figure 18-10 The AddressControl control includes a TypeConverter for its
custom property, Address.

To keep code as concise as possible, the AddressTypeConverter class uses the Type-
Descriptor.GetProperties shared method to create a PropertyDescriptorCollection
object that describes all the properties of the Address class. In some cases, you might
need to create this collection manually. You must take this step, for example, when not
all the properties should be made available in the Properties window, or when you
need to define a custom editor for one of them.

A custom TypeConverter object can do more than add support for object properties.
For example, you can use a custom TypeConverter class to validate the string entered
in the Properties window or to convert this string to a value type other than a standard
numeric and date .NET type. For more information about custom TypeConverter
classes, see the MSDN documentation.

C18620598.fm Page 628 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 629

Custom Control Designers

You surely noticed that a few Windows Forms controls display one or more hyperlinks
near the bottom edge of the Properties window, or additional commands on the con-
text menu that appears when you right-click on them. Implementing this and a few
other features is relatively simple, and requires that you create a custom control
designer and associate it with your custom control.

A control designer is a class that inherits from System.Windows.Forms.Design.Con-
trolDesigner class, which is defined in the System.Design.dll assembly. (You must add
a reference to this assembly because Visual Basic .NET projects don’t reference it by
default.) Providing one or more commands in the Property window or in the context
menu requires that you override the Verbs read-only property. In the demo applica-
tion, I created a control designer for the AddressControl; my custom designer adds two
verbs to the control, InitProperties and ClearProperties:

Class AddressControlDesigner
Inherits System.Windows.Forms.Design.ControlDesigner

’ Return a collection of verbs for this control
Public Overrides ReadOnly Property Verbs() As DesignerVerbCollection

Get
Dim col As New DesignerVerbCollection
col.Add(New DesignerVerb(“Init Properties", AddressOf InitProperties))
col.Add(New DesignerVerb(“Clear Properties", AddressOf ClearProperties))
Return col

End Get
End Property
§

End Class

When the user clicks on the link in the Properties window or selects the verb from the
context menu, Visual Studio .NET invokes the handler pointed to by the corresponding
delegate. The ClearProperties routine simply resets the control’s Address property, but
you must take additional steps to let Visual Studio .NET know that you assigned a new
value to a property. I encapsulated these steps in the SetAddressProperty private pro-
cedure, so that you can easily adapt my code to other procedures:

Sub ClearProperties (ByVal sender As Object, ByVal e As EventArgs)
SetAddressProperty(New Address)

End Sub

’ Assign a new Address property, raise all expected events.
Private Sub SetAddressProperty(ByVal newValue As Address)

Dim thisCtrl As AddressControl = CType(Me.Control, AddressControl)
’ Let Visual Studio know we’re about to change the Address property.
Dim pdCol As PropertyDescriptorCollection = _

TypeDescriptor.GetProperties(thisCtrl)
Dim pd As PropertyDescriptor = pdCol.Find(“Address", True)
RaiseComponentChanging(pd)
’ Assign the value, but remember old value.

C18620598.fm Page 629 Friday, November 21, 2003 11:37 AM

630 Part IV: Win32 Applications

Dim oldValue As Address = thisCtrl.Address
thisCtrl.Address = newValue
’ Let Visual Studio know we’ve done the assignment.
RaiseComponentChanged(pd, oldValue, thisCtrl.Address)

End Sub

The InitProperties procedure does something more interesting: it creates a form that
displays another instance of the AddressControl class so that the programmer can
change the Street, City, Zip, State, and Country properties simply by typing in the con-
trol:

Sub InitPropertiesHandler(ByVal sender As Object, ByVal e As EventArgs)
’ Create a new control that points to the same Address object.
Dim thisCtrl As AddressControl = CType(Me.Control, AddressControl)
Dim newCtrl As New AddressControl
newCtrl.Address = thisCtrl.Address
’ Display a form that displays the new control.
Dim frm As New Form
frm.Text = “Set AddressControl’s Address members"
frm.ClientSize = newCtrl.Size
frm.Controls.Add(newCtrl)
frm.ShowDialog()
’ Raise all required events.
SetAddressProperty(thisCtrl.Address)

End Sub

You complete your job by flagging the AddressControl class with an appropriate
Designer attribute:

<Designer(GetType(AddressControlDesigner))> _
Public Class AddressControl
§
End Class

Figure 18-11 shows what happens when the programmer clicks on the Init Properties
command. Interestingly, the AddressControl reacts to the PropertyChanged events of
the Address class; therefore, the underlying control is immediately updated as you type
in the foreground form.

A control designer can do more than provide custom commands. For example, you can
react to the mouse hovering over the control at design time by overriding the
OnMouseEnter and OnMouseLeave protected methods of the ControlDesigner class, or
you can limit the way a control can be resized by overriding the SelectionRules prop-
erty—for example, the AddressControl doesn’t know how to resize its constituent con-
trols, so you might make it visible and moveable, but not resizable:

Public Overrides ReadOnly Property SelectionRules() As SelectionRules
Get

Return SelectionRules.Moveable Or SelectionRules.Visible
End Get

End Property

C18620598.fm Page 630 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 631

F18LR11.eps

Figure 18-11 You can add verbs to the Properties window and the context menu that
appears when you right-click a custom control.

Note When you create a component rather than a control, you can associate a custom
designer to it by creating a class that inherits from ComponentDesigner instead of Control-
Designer. For an example of a component that uses a custom designer, see the Message-
BoxDisplayer component introduced in Chapter 13.

Data-Binding Support

Chances are that you want to add data-binding support to your custom controls, and the
good news is that in most cases you don’t need to do anything to support it. In fact,
because data binding is offered by the Windows Forms infrastructure, users of your con-
trol can bind any public property simply by clicking on the (Advanced) button under
(DataBindings) in the Property window, and select which property is bound to which field
in any data source defined on the form. (Of course, you have to do the binding via code
if you wish to bind to a component that doesn’t appear in the parent form’s tray area.)

In practice, however, you can expect that your users will want to bind only one or two
properties in the control. This is the case of the Text property for TextBox-like controls,
or the Checked property for CheckBox-like controls. You can make this task much sim-
pler if you mark this property (or properties) with the Bindable attribute:

<Bindable(True)> _
Public Property Caption() As String

§
End Property

C18620598.fm Page 631 Friday, November 21, 2003 11:37 AM

632 Part IV: Win32 Applications

When you do this, the property appears under (DataBindings) and users don’t have to
search for it in the list of all bindable properties.

Things become more interesting (and complicated) if your control must support com-
plex data binding, the type of binding that controls such as ListBox and DataGrid sup-
port. To let users bind your control to a DataSet or a DataTable, as they do with built-
in controls, you should expose a DataSource property of the IListSource type:

Private m_DataSource As IListSource

<Category(“Data”)> _
Public Property DataSource() As IListSource

Get
Return m_DataSource

End Get
Set(ByVal Value As IListSource)

SetDataObject(Value, DataMember)
m_DataSource = Value

End Set
End Property

You should also expose a DataMember property to fully support the DataSet as a
potential data source. DataMember is a string property, but built-in controls let users
select it among all the members exposed by the object assigned to the DataSource
property. It took some investigation with ILDASM for me to discover what attribute
gives the desired effect:

Private m_DataMember As String

<Category(“Data”), DefaultValue(““), _
Editor(“System.Windows.Forms.Design.DataMemberListEditor, System.Design,

Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a", _
“System.Drawing.Design.UITypeEditor,System.Drawing,
Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”)> _
Public Property DataMember() As String

Get
Return m_DataMember

End Get
Set(ByVal Value As String)

SetDataObject(DataSource, Value)
m_DataMember = Value

End Set
End Property

It’s essential that the two long boldface strings be entered on the same logical line,
though they are split here for typographical reasons. Also, keep in mind that these
strings are valid only for version 1.1 of the .NET Framework.

The code for both the DataSource and DataMember properties invoke a common Set-
DataObject private procedure, which is where the control can get a reference to the
actual CurrencyManager associated with the data source:

C18620598.fm Page 632 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 633

Dim WithEvents CurrencyManager As CurrencyManager

Private Sub SetDataObject(ByVal dataSource As IListSource, ByVal dataMember As String)
’ Do nothing at design-time.
If Me.DesignMode Then Exit Sub

Dim cm As CurrencyManager
’ Find a reference to the CurrencyManager (Throws if invalid).
If dataSource Is Nothing Or Me.BindingContext Is Nothing Then

cm = Nothing
ElseIf Not dataSource.ContainsListCollection Then

’ Ignore DataMember if data source doesn’t contain a collection.
cm = DirectCast(Me.BindingContext(dataSource), CurrencyManager)

Else
’ Nothing to do if DataMember hasn’t been set.
If dataMember = ““ Then Exit Sub
cm = DirectCast(Me.BindingContext(dataSource, dataMember), CurrencyManager)

End If

If Not (cm Is Me.CurrencyManager) Then
’ Only if the CurrencyManager has actually changed.
Me.CurrencyManager = cm
ReadDataSchema()
DisplayData()

End If
End Sub

The control reads all data from the data source and displays them in the
ReadDataSchema and DisplayData procedures, respectively. The example included on
the companion CD is a data-bound ListView control that displays all the columns in a
data source. (See Figure 18-12.) Here’s how you can read the schema of the underlying
data source and fill the control with data:

Sub ReadDataSchema()
If Me.CurrencyManager Is Nothing Then Exit Sub
Me.Columns.Clear()
’ Add one ListView column for each property in data source.
For Each pd As PropertyDescriptor In Me.CurrencyManager.GetItemProperties

Me.Columns.Add(pd.Name, 100, HorizontalAlignment.Left)
Next

End Sub

Private Sub DisplayData()
If Me.CurrencyManager Is Nothing Then Exit Sub
’ Get the list of values managed by the CurrencyManager.
Dim innerList As IList = Me.CurrencyManager.List
If innerList Is Nothing Then Exit Sub

’ Iterate over all the rows in the data source.
For index As Integer = 0 To innerList.Count - 1

’ Iterate over all columns in the data source.
Dim currItem As ListViewItem = Nothing
For Each pd As PropertyDescriptor In Me.CurrencyManager.GetItemProperties

’ Get the value of this property for Nth row.

C18620598.fm Page 633 Friday, November 21, 2003 11:37 AM

634 Part IV: Win32 Applications

Dim value As Object = pd.GetValue(innerList(index))
’ Add as a ListView item or subitem.
If currItem Is Nothing Then

currItem = Me.Items.Add(value.ToString)
Else

currItem.SubItems.Add(value.ToString)
End If

Next
Next

End Sub

F18LR12.eps

Figure 18-12 The DataBoundListView control is an example of how you can
implement complex data binding.

For a fully functional data-bound control you must ensure that the control is always in
sync with the CurrencyManager. In other words, a new row in the data source becomes
current when the user selects a different row in your control, and a new row in your
control becomes selected when the user moves to another row by some other means
(for example, via navigational buttons). The DataBoundListView control achieves this
synchronization by overriding the OnSelectedIndexChanged protected method and by
trapping the CurrencyManager’s PositionChanged event. Please see the sample code
for more details on how you can complete these tasks and how you can write edited
values back in the data source.

Design-Time and Run-Time Licensing

If you plan to sell your custom controls and components, you probably want to imple-
ment some type of licensing for them to enforce restrictions on their use. The good
news is that the .NET Framework comes with a built-in licensing scheme, but you can
override it to create your own licensing method.

To explain how licensing works, I’ll show how to create a license provider class named
LicWindowsFileLicenseProvided, which checks the design-time license of a control and
refuses to load the control in the Visual Studio .NET environment after a given expira-
tion date. This expiration date must be stored in a text file named controlname.lic
stored in c:\Windows\System32 directory (more in general, the path of your Windows
System32 directory). The first line of this file must be in this format:

controlname license expires on expirationdate

C18620598.fm Page 634 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 635

where controlname is the full name of the control and expirationdate is the date of the
end of the license agreement. For example, according to this license schema, a license
file for the AddressControl in the CustomControlDemo namespace must be named Cus-
tomControlDemo.AddressControl.lic. If the license for this control expires on January 1,
2006, the first line of this file must be

CustomControlDemo.AddressControl license expires on 01/01/2006

(Character case is significant.) You must do two things to apply a license provider to
the class that must be licensed. First, you decorate the class definition with a
LicenseProvider attribute. Second, you query the .NET licensing infrastructure from
inside the control’s constructor method by using the LicenseManager.Validate shared
method, which throws an exception if the .lic file can’t be found or its contents aren’t
correct. If successful, the method returns a License object, which you later dispose of
when the object is destroyed. Here’s a revised version of the AddressControl class that
employs the licensing mechanism based on the LicWindowsFileLicenseProvider cus-
tom license provider. (Added lines are in boldface.)

<LicenseProvider(GetType(LicWindowsFileLicenseProvider))> _
Public Class AddressControl

Inherits System.Windows.Forms.UserControl

’ The License object
Private lic As License

Public Sub New()
MyBase.New()
’ Validate the License.
lic = LicenseManager.Validate(GetType(AddressControl), Me)
’ This call is required by the Windows Form Designer.
InitializeComponent()

End Sub

’ Destroy the License object without waiting for the garbage collection.
Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

If disposing Then
’ Destroy the license.
If Not (lic Is Nothing) Then

lic.Dispose()
lic = Nothing

End If
End If
MyBase.Dispose(disposing)

End Sub
§

End Class

Alternatively, you can use the LicenseManager.IsValid shared method to check a
license object without throwing an exception if the license isn’t valid.

C18620598.fm Page 635 Friday, November 21, 2003 11:37 AM

636 Part IV: Win32 Applications

Obviously, this licensing mechanism is easy to violate, in that a user might change the
expiration date in the .lic file to postpone the license expiration, but you can use this
example to create a more robust schema. For example, you might encrypt the license
text and store it in a nonobvious location (including the registry).

A custom license provider is a class that derives from the abstract LicenseProvider class
and overrides the virtual GetLicense method. This method is indirectly called by the
LicenseManager.Validate method (in the custom control’s constructor method) and
receives several arguments that let you determine the name of the control or compo-
nent in question, whether you’re at design time or run time, and other pieces of infor-
mation. The Windows Forms infrastructure expects the GetLicense method to return a
license object if it’s OK to use the custom control or component; otherwise, it returns
Nothing or throws a LicenseException object. (You decide whether the method should
return Nothing or throw the exception by inspecting the allowException argument
passed to the GetLicense method.) Here’s the implementation of the LicWindowsFileLi-
censeProvided class:

Class LicWindowsFileLicenseProvider
Inherits LicenseProvider

Public Overrides Function GetLicense(ByVal context As LicenseContext, _
ByVal typ As System.Type, ByVal instance As Object, _
ByVal allowExceptions As Boolean) As License

’ This is the name of the control.
Dim ctrlName As String = typ.FullName

If context.UsageMode = LicenseUsageMode.Designtime Then
’ We are in design mode.
’ Check that there is a .lic file in Windows system directory.
’ Build the full path of the .lic file.
Dim filename As String = Environment.SystemDirectory() _

& “\” & ctrlName & “.lic"
’ This is the text that we expect at the beginning of file.
Dim licenseText As String = ctrlName & “ license expires on “
Dim fs As System.IO.StreamReader
Try

’ Open and read the license file (throws exception if not found).
fs = New System.IO.StreamReader(filename)
’ Read its first line.
Dim text As String = fs.ReadLine
’ Throw if it doesn’t match the expected text.
If Not text.StartsWith(licenseText) Then Throw New Exception
’ Parse the expiration date (which follows the expected text).
Dim expireDate As Date = _

Date.Parse(text.Substring(licenseText.Length))
’ Throw if license has expired.
If Now > expireDate Then Throw New Exception

Catch ex As Exception

C18620598.fm Page 636 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 637

’ Throws a LicenseException or just returns Nothing.
If allowExceptions Then

Throw New LicenseException(typ, instance, _
 “Can’t find design-time license for “ & ctrlName)

Else
Return Nothing

End If
Finally

’ In all cases, close the StreamReader.
If Not (fs Is Nothing) Then fs.Close()

End Try

’ If we get here, we can return a RuntimeLicense object.
Return New DesignTimeLicense(Me, typ)

Else
’ We enforce no licensing at run time,
’ so we always return a RunTimeLicense.
Return New RuntimeLicense(Me, typ)

End If
End Function

End Class

In general, you should return two different license objects, depending on whether
you’re at design time or run time. (Otherwise, a malicious and clever user might use
the run-time license at design time.) A license object is an instance of a class that
derives from System.ComponentModel.License and overrides its LicenseKey and Dis-
pose virtual methods. Here’s a simple implementation of the DesignTimeLicense and
RuntimeLicense classes referenced by the preceding code snippet. (These classes can
be nested inside the LicWindowsFileLicenseProvider class.)

Class LicWindowsFileLicenseProvider
§
’ Nested class for design-time license

Public Class DesignTimeLicense
Inherits License

Private owner As LicWindowsFileLicenseProvider
Private typ As Type

Sub New(ByVal owner As LicWindowsFileLicenseProvider, ByVal typ As Type)
Me.owner = owner
Me.typ = typ

End Sub

Overrides ReadOnly Property LicenseKey() As String
Get

’ Just return the type name in this demo.
Return typ.FullName

End Get
End Property

C18620598.fm Page 637 Friday, November 21, 2003 11:37 AM

638 Part IV: Win32 Applications

Overrides Sub Dispose()
’ There is nothing to do here.

End Sub
End Class

’ Nested class for run-time license

Public Class RuntimeLicense
Inherits License

Private owner As LicWindowsFileLicenseProvider
Private typ As Type

Sub New(ByVal owner As LicWindowsFileLicenseProvider, ByVal typ As Type)
Me.owner = owner
Me.typ = typ

End Sub

Overrides ReadOnly Property LicenseKey() As String
Get

’ Just return the type name in this demo.
Return typ.FullName

End Get
End Property

Overrides Sub Dispose()
’ There is nothing to do here.

End Sub
End Class

End Class

Read the remarks in the demo project to see how to test the LicWindowsFileLi-
censeProvider class with the AddressControl custom control. Figure 18-13 shows the
kind of error message you see in Visual Studio if you attempt to load a form that con-
tains a control for which you don’t have a design-time license.

F18LR13.eps

Figure 18-13 The error message that Visual Studio displays when you load a form containing
a control for which you don’t have a design-time license

Hosting Custom Controls in Internet Explorer

Windows Forms controls have one more intriguing feature that I have yet to discuss:
you can host a Windows Forms control in Internet Explorer in much the same way that
you can use an ActiveX control, with an important improvement over ActiveX con-
trols—Windows Forms controls don’t require any registration on the client machine.
However, the .NET Framework must be installed on the client, so in practice you can
adopt this technique only for intranet installations.

C18620598.fm Page 638 Friday, November 21, 2003 11:37 AM

Chapter 18: Custom Windows Forms Controls 639

You specify a Windows Forms control in an HTML page using a special <OBJECT> tag
that contains a CLASSID parameter pointing to the DLL containing the control. For
example, the following HTML page hosts an instance of the TextBoxEx control. You
can see the effect in Figure 18-14.

<HTML><BODY>
<H2>Loading the TextBoxEx custom control in IE</H2>

Enter a 5-digit value:

<OBJECT ID="TextBoxEx1"

CLASSID="/CustomControlDemo.dll#CustomControlDemo.TextBoxEx”
HEIGHT=80 WIDTH="300” VIEWASTEXT>

<PARAM NAME="Text” VALUE="12345">
</OBJECT>
<P><INPUT type="button” value="Clear Text” onClick="ClearText()">

<SCRIPT>
function ClearText() {

TextBoxEx1.Text = “";
}
</SCRIPT>
</BODY></HTML>

The boldface portions show how you insert the control in the page, initialize its prop-
erties using the <PARAM> tag, and access its properties programmatically from a JScript
function. The value of the CLASSID attribute is the path of the DLL hosting the control,
followed by a pound sign (#) and the complete name of the control in question. In the
preceding example, the DLL is in the root virtual directory, but it can be located any-
where in the virtual directory tree of Internet Information Services (IIS). When testing
the preceding code, remember that you must deploy the HTML file in an IIS directory
and access it from Internet Explorer using HTTP. Nothing happens if you display it by
double-clicking the file from inside Windows Explorer.

F17LR14.eps

Figure 18-14 Hosting the TextBoxEx control in Internet Explorer 6

Using a control hosted in Internet Explorer has other limitations. For example, you
can’t use a control stored in the local machine’s GAC and you can’t use a CAB file to

C18620598.fm Page 639 Friday, November 21, 2003 11:37 AM

640 Part IV: Win32 Applications

host multiple assemblies because Internet Explorer 6 is able to deal only with CAB files
containing only one assembly. There are limitations also when accessing the control
programmatically. For one, you can’t access object properties (such as the Address
property of the AddressControl sample described in this chapter) because the runtime
creates a COM Callable Wrapper (CCW) to make the control visible to the script, but it
doesn’t create a CCW for dependent properties. (Read Chapter 30 for more details
about the CCW.)

Finally, the IIS virtual directory containing the control must have its security set to
Scripts only. Any other value, including Scripts and Executables, will prevent the con-
trol from loading. The code running in the control appears to the runtime as having
been downloaded from the Internet; therefore, many operations won’t be allowed
unless you grant this assembly broader privileges. (You can learn more about these
security-related limitations in Chapter 33.)

Note An ASP.NET page can check whether the client browser supports the .NET runtime by
querying the HTTPRequest.Browser.ClrVersion property. A well-behaved ASP.NET application
might use ActiveX controls, DHTML, or plain HTML if the browser isn’t able to host Windows
Forms controls.

At the end of our exploration of built-in controls, GDI+, and custom Windows Forms
controls, you should be able to create truly functional and eye-catching Win32 appli-
cations. In the next chapter, you’ll see how you can create even more powerful Win32
programs by coding against a few .NET components that have no user interface.

C18620598.fm Page 640 Friday, November 21, 2003 11:37 AM

