

WHITE PAPER <

Comparing VB Migration Partner

with Upgrade Wizard

www.vbmigration.com 1

The Upgrade Wizard was a tool that a company developed for Microsoft and that was included in

Visual Studio .NET editions, from version 2002 to 2008. Microsoft ceased to distribute the Upgrade

Wizard when support for Visual Basic 6 officially ended. Very few developers missed it, because it

never gained a great reputation. Worse, it contributed to create a bad reputation for all VB6-to-.NET

code translators on the market.

The same company that developed the UW for Microsoft later released a more powerful version of

that tool, even though it basically uses the same conversion engine.

When we launched VB Migration Partner we wanted to create a conversion tool that was

significantly better than the Upgrade Wizard. We managed to do so by implementing a parser that

was specifically written for VB6 and a support library that could fill the functional gap between that

language and the .NET Framework. It is therefore interesting to compare VB Migration Partner with

the UW in terms of compilation errors and warnings.

In the first part of this document, we illustrate the results you get when running both programs over

a number of VB6 projects. In the second part, it describes whether and how both programs solve the

most common issues you face when migrating VB6 apps to .NET.

Test #1: Migrate open source VB6 projects

Instead of just providing a series of unverifiable numbers, we run both tools against a group of open

source code source which offer a variety of challenges, including rarely-used controls, data-binding,

graphic methods, and drag-and-drop.

https://www.vbmigration.com/code-samples/

WHITE PAPER <

Comparing VB Migration Partner

with Upgrade Wizard

www.vbmigration.com 2

We didn’t edit any executable statement in the original VB6 nor in the converted VB.NET code. In

some of these cases, however, we made a second pass through VB Migration Partner after adding all

the pragmas that were necessary to reach a fully functional .NET project.

We benchmarked the Upgrade Wizard installed with Microsoft Visual Studio 2005 and release 1.00

of VB Migration Partner, on an Intel Core Duo 7800 @ 2.66GHz running Microsoft Windows Vista

64-bit SP1. Note: We could have run these tests again on more recent releases of both the UW and VB

Migration Partner and on more powerful computers, but the ration between the two programs’ speed and

correctness would be substantially identical.

WHITE PAPER <

Comparing VB Migration Partner

with Upgrade Wizard

www.vbmigration.com 3

A summary of the results:

• VB Migration Partner generates nearly 5x fewer compilation errors than the Upgrade

Wizard before adding a single pragma. In four cases, Upgrade Wizards generates just too

WHITE PAPER <

Comparing VB Migration Partner

with Upgrade Wizard

www.vbmigration.com 4

many compile errors for Visual Studio to display (VS2005 couldn’t display more than 102

compilation errors), therefore the actual ratio is even higher.

• In most cases, VB Migration Partner allowed us to get rid of all these errors with just one or

two pragmas.

• Considering all the pragmas used in all samples delivers we get an average of one pragma

every 430 lines of code; in larger applications the ratio is even more convenient, because a

single pragma can affect all the files and statements in the project.

• The UW processes about 46 LOCs per second on the average, VB Migration Partner runs at

187 LOCs per second, i.e. 4 times faster while performing many additional tasks, for example

the creation of code statistics and reports. When fed larger applications, we’ve seen that VB

Migration Partner consistently performs 7-8 times faster than the Upgrade Wizard.

Interestingly, most of the compilation errors you get from VB Migration Partner come from the first

two code samples – School and Grid-Net Waves 3D. If you exclude them from the stats, it turns out

that VB Migration Partner averages at one compilation error every 1140 LOCs before adding a

single pragma, and is therefore about 30 times better than the Upgrade Wizard (which delivers one

compilation error every 40 LOCs). On large, real-world VB6 projects we’ve seen that the actual ratio

is between 8x and 12x.

It’s important to bear in mind that compilation errors and warnings tell only a part of the story,

because even a VB.NET project with zero compilation errors might raise one or more runtime errors.

In other words, the samples that show zero compilation errors after the migration with the Upgrade

Wizard might require a lot of additional work to run correctly. By comparison, the column labelled as

Number of pragmas indicates how many pragmas were needed to have a fully functional VB.NET

application that raises no runtime errors.

WHITE PAPER <

Comparing VB Migration Partner

with Upgrade Wizard

www.vbmigration.com 5

Along the same lines, the number of pragmas that are necessary to reach a fully functional VB.NET

application tend to decrease - in percentage over the total number of executable lines – when the

VB6 application gets larger, because often one single pragma scoped at the project-level can solve all

similar occurrences of a given compile or runtime error.

Test #2: Aivosto’s compatibility checklist

Another way to compare VB Migration Partner with Upgrade Wizard is checking which migration

issues either software can solve automatically.

VB Project Analyzer is a popular tool available on Aivosto's web site. It performs code analysis, dead

code detection and removal, coding and naming rule enforcement. It can find common programming

errors (including memory leaks caused by undisposed API handles), can optimize your code much

faster than the fastest and smartest developer, and can generate a thorough documentation of all

classes, forms, and members (including cross-reference data to detect who call whom). Best of all, it

works with VB6, VB.NET, and VBA.

If you are preparing your VB6 apps for migration to .NET, Aivosto’s VB Project Analyzer is also very

helpful, because it can automatically spot most VB6 language elements that the Update Wizard

doesn't convert correctly to VB.NET. The online help includes the list of all compatibility checks that

VB Project Analyzer performs. Please refer to the original list for an explanation of each compatibility

issue.

NOTEs

http://www.aivosto.com/project/project.html
http://www.aivosto.com/project/help/enterprise-netcheck-rules.html
http://www.aivosto.com/project/help/enterprise-netcheck-rules.html

WHITE PAPER <

Comparing VB Migration Partner

with Upgrade Wizard

www.vbmigration.com 6

VBMP stands for VB Migration Partner, UW stands for Upgrade Wizard

 means that a given feature is supported by VB Migration Partner (VBMP)

 * means that the feature appears in Aivosto compatibility checklist (created in 2005) but is

supported by Upgrade Wizard 2008 (UW)

 P means that VBMP supports the feature only partially: for example, it doesn’t cause a

compilation error yet it doesn’t ensure functional equivalence at runtime.

Add-in model changed in

VB.NET

 VBMP is unable to migrate add-ins because the IDE object model is

too different, but it emits a warning.

ADO required for data

binding in VB.NET

VBMP supports DAO, RDO and ADO data-binding, including

binding with DataEnvironment objects, ADO data source classes,

and simple-bound data consumer classes.

Array must start at 0 in

VB.NET

VBMP supports several strategies for migrating arrays with non-

zero LBound. Not only does it fix the array declaration, it can even

modify the index used to reference individual array elements.

As Any not allowed in

VB.NET

VBMP correctly converts As Any arguments by producing one or

more overloads of the Declare statement.

As New doesn't auto-

instantiate if object

released in VB.NET

VBMP optionally supports the lazy-instancing feature of As New

variables.

WHITE PAPER <

Comparing VB Migration Partner

with Upgrade Wizard

www.vbmigration.com 7

As New unsupported for

arrays in VB.NET

VBMP can correctly translate As New arrays by preserving the VB6

semantics.

ByRef property params

unsupported by VB.

VBMP converts ByRef arguments inside properties into ByVal

arguments because VB.NET requires it; however it emits a warning

if the argument appears to be modified inside the property

procedure – or is passed to another method that can modify it.

ByVal/ByRef not allowed

in API calls in VB.NET

VBMP safely resolves ByVal and ByRef in calls to API methods.

Circle and Oval

unsupported by VB.NET

*

VBMP correctly converts Line and Shape controls, and even

translates graphic methods such as Line, Circle, PSet, PaintPicture,

etc.

Class Instancing changes

in VB.NET

VBMP deals with SingleUse objects as if they were MultiUse,

because .NET has no notion of “single use” objects. Global objects

are converted correctly.

COM module methods not

callable from VB.NET

 VBMP can’t handle COM module methods.

COM+/MTS not

upgradable to VB.NET

VBMP correctly converts all frequently used MTS/COM+ features

into the corresponding .NET features.

Conditional block will not

upgrade to VB.NET

 VBMP doesn’t migrate code inside an #IF block whose condition is

false.

Control unsupported by

VB.NET

VBMP converts 60+ controls, including all those included in the VB6

toolbox with the only exception of OLE Container. It supports other

WHITE PAPER <

Comparing VB Migration Partner

with Upgrade Wizard

www.vbmigration.com 8

commonly used controls such as WebBrowser and ScriptControl,

and all the windowless controls in the MSWLESS library.

DDE unsupported by

VB.NET

 VBMP supports DDE communications, among migrated VB.NET

apps.

Diagonal line unsupported

by VB.NET

*

VBMP supports the Line control, with any inclination and style.

DoEvents() returns no

value in VB.NET

VBMP provides a DoEvents6 replacement statement that returns

the number of open forms.

Drag-and-drop requires

rewrite for VB.NET

VBMP fully supports OLE drag-and-drop, in both the manual and

automatic flavors. Starting with version 1.20, VBMP version also

supports “classic” (non-OLE) drag-and-drop.

Event behavior changes in

VB.NET

VBMP fully supports all these (and other) events, no work is

required after update.

Event log model differs in

VB.NET

VBMP supports all the Event Log-related properties and methods.

Initialized arrays in UDTs

unsupported by VB.NET

VBMP correctly initializes UDTs containing arrays, fixed-length

strings, and auto-instancing (As New) object variables. It even

generates special code to correctly convert assignments between

UDTs that contain these members. (UW doesn’t even emit a warning

in that case.)

MDIForm event

unsupported in VB.NET

VBMP correctly handles mouse-related events inside MDI forms.

WHITE PAPER <

Comparing VB Migration Partner

with Upgrade Wizard

www.vbmigration.com 9

Member cannot be default

in VB.NET

VBMP offers the same degree of support that UW does. In addition,

VBMP can convert a default method with parameters into a VB.NET

ReadOnly Property and then mark it as the default member of that

class.

Module not upgradable to

VB.NET

P

VBMP doesn’t migrate DHTML and WebClass components.

However, it converts UserDocument and PropertyPages into

VB.NET UserControls, thus you have something to work with after

the migration even though you'll need additional manual coding to

have it work as expected.

No control arrays in

VB.NET

VBMP correctly converts all sorts of VB6 control arrays, including

arrays of menus and 3rd-party ActiveX controls.

Old VB project not

upgradable to VB.NET

 VBMP has the same limitation as UW and requires that you migrate

VB3, VB4, and VB5 projects to VB6 before attempting the migration

to VB.NET.

OLE Automation

unavailable in VB.NET

P

VBMP converts OLE Automation features into do-nothing members

that are marked as obsolete. Calling these members has no effect or

throws an exception, but at least you can start testing other portions

of the application without having to fix one or more compilation

errors.

ParamArray is ByVal in

VB.NET

VBMP can automatically generate code that ensures that

ParamArray use by-reference semantics.

WHITE PAPER <

Comparing VB Migration Partner

with Upgrade Wizard

www.vbmigration.com 10

Parameterless default

properties unsupported in

VB.NET

VBMP behaves like UW when the object variable is typed; when the

variable uses late binding, VBMP can generate code that determines

the default member at runtime.

Property mixes scopes

*

VBMP correctly converts property procedures with mixed scope.

Property passed ByRef

VBMP can convert ByRef parameters into ByVal parameters if the

parameter isn’t assigned inside the method.

Resource file requires

work in VB.NET

VBMP converts both the resource file and all LoadRes* methods; it

even converts them to My.Resources members if possible.

ScaleMode must be

vbTwips for VB.NET

VBMP supports all ScaleMode settings, including 0-vbUser.

Setting .Interval does not

enable/disable timer in

VB.NET

Projects converted by VBMP don’t suffer from this issue.

String byte functions

unavailable in VB.NET

 VBMP partially support byte-oriented string functions, such as LenB

or InStrB; it also support implicit conversion between strings and

byte arrays, and conversions between ANSI and Unicode strings.

Sub Main not executed in

VB.NET

VBMP fixes this issue: a VB.NET class library project that is the

result of converting a VB6 ActiveX DLL project correctly executes

the Sub Main method before any class in the library is instantiated.

Sub Main

.NET program exits at End Sub: VBMP can handle this issue by

adding a proper pragma.

WHITE PAPER <

Comparing VB Migration Partner

with Upgrade Wizard

www.vbmigration.com 11

TTF/OTF fonts required

by VB.NET

VBMP allows you to determine how fonts are converted during the

migration to VB.NET.

Type unsupported by

VB.NET

VBMP comes with a VB6FixedString type that perfectly mimics the

VB6 fixed-length string type; also, VBMP can convert arrays of

fixed-length strings; additionally, fixed-length strings in UDTs can be

converted into standard strings and still retain the fixed-length

behavior

Unavailable in VB.NET

VBMP supports CVErr, GoSub, Return, vbDataObject, vbUnicode,

vbFromUnicode, IsEmpty, and a limited form of LSet that works with

UDTs. (It doesn’t support VarPtr, ObjPtr, and StrPtr undocumented

functions, though.)

Underscore _names not

hidden in VB.

VBMP doesn’t deal names with a leading underscore in a special

way, however it recognizes VB6’s hidden members and convert

them correctly to VB.NET.

VB5 project may not

upgrade to VB.NET

P

VBMP converts only VB6 projects, therefore VB5 projects must be

converted to VB6 first. However, it supports the Common Windows

controls released with VB5.

WebClasses upgrade to

ASP.NET

 VBMP doesn’t convert WebClass projects. We strongly believe that

such projects should be upgraded to ASP.NET in all cases.

Function without type

specification

VBMP emits a warning if a function or property has no As clause;

you can use the SetType pragma to define the type returned by the

VB.NET function without altering the VB6 code.

WHITE PAPER <

Comparing VB Migration Partner

with Upgrade Wizard

www.vbmigration.com 12

Variable without type

specification

VBMP emits a warning if a variable or parameter has no As clause;

however, you can use the SetType pragma to define the type of the

VB.NET variable without altering the VB6 code.

ByVal/ByRef missing

By default, VBMP doesn’t take any action if an explicit ByRef/ByVal

keyword is missing and converts these parameters as ByRef

parameters; however, it emits a warning if a ByRef parameter can be

safely converted as a ByVal parameter and you can use the

UseByVal pragma to automatically convert such parameters into

ByVal parameters.

Option Explicit missing

VBMP doesn’t take any specific action if Option Explicit is missing;

however, you can use a pragma to automatically create VB.NET

variables for all VB6 variables that weren’t explicitly declared.

Optional parameter

missing default value

VBMP automatically add the property default value for Optional

parameters if necessary.

Variable/Parameter with

generic type

VBMP provides statistics about Variant variables and allows you to

use the SetType pragma to change the type of a variable or

parameter during the conversion to VB.NET, without affecting the

existing VB6 code.

To recap, VB Migration Partner can fully or partially handle 44 of the 49 compatibility issues that are

left unresolved by the Upgrade Wizard. The remaining 5 unresolved issues are related to features

that just don't make sense under VB.NET - such as OLE-related properties, the IDE extensibility

object model, and WebClasses components.

WHITE PAPER <

Comparing VB Migration Partner

with Upgrade Wizard

www.vbmigration.com 13

Even more important, VB Migration Partner fixes many more compatibility issues than those listed

in this page. As a matter of fact, VBMP solves many problems that even VB Project Analyzer fails to

detect. (Read here and here for a more exhaustive list of migration problems.)

https://www.vbmigration.com/white-papers/vb6-vs-vb-net-language/
https://www.vbmigration.com/white-papers/vb6-vs-net-controls/

