

 WHITE PAPER <

Tips for smooth migration of calls

to Windows API methods

www.vbmigration.com 1

VB Migration Partner does a superb in dealing with Windows API calls. Here's a summary of the

features that it supports:

• converts As Any parameters, by creating all the necessary overloads

• deals correctly with API methods that take a callback address (e.g. EnumWindows,

EnumFonts)

• provides recommendation about the .NET object/method that can effectively replace the API

method; we cover 300+ different API calls.

• ensures that string immutability doesn't prevent the .NET code from working correctly (see

this article)

• generates the correct MarshalAs attributes for elements in Type (Structure) blocks

• correctly translates fixed-length strings inside Type blocks, so that they work correctly when

passed to the Windows API method

• automatically initializes static arrays inside Type blocks, so that you don't get unexpected

crashes when invoking an API method that expects to find a buffer there

• creates a wrapper method that ensures that orphaned delegates don't cause an unexpected

runtime exception, an advanced programming technique discussed in this KB article

• includes the VB6WindowsSubclasser class that helps you correctly migrate subclassing-

based techniques (as explained here)

In spite of all these features, there are cases when you still need to manually edit either the original

VB6 code or the converted VB.NET. This happens, for example, if the original code uses the VarPtr,

StrPtr, or ObjPtr functions to pass memory pointers to an external API method. These three

functions aren't supported under VB.NET or C# and there is no simple way to simulate them. (Tip:

You can use the VB6 Bulk Analyzer (available here) to quickly check whether your VB6 application

contains the these functions.)

http://www.vbmigration.com/detknowledgebase.aspx?Id=52
http://www.vbmigration.com/detknowledgebase.aspx?Id=51
http://www.vbmigration.com/detknowledgebase.aspx?Id=58
https://www.vbmigration.com/vb6-bulk-analyzer/

 WHITE PAPER <

Tips for smooth migration of calls

to Windows API methods

www.vbmigration.com 2

The good news is, in the vast majority of cases you don't need to deal with memory pointers under

.NET, because the .NET Framework offer a valid "pure" alternative to the API method in question.

This article illustrates a few steps that you might take to correctly migrate calls to Windows API – or

to other external DLLs – and how you can take advantage of VB Migration Partner features to reduce

manual edits to the very minimum and take advantage of the convert-test-fix methodology.

Avoid Windows API calls, if possible

You should always attempt to reduce direct calls to Windows API methods whenever it’s possible to

do so. Our experience is that many VB6 developers "love" to use Windows API methods directly,

even if the VB6 language provides an alternative approach, because these methods usually perform

faster. A typical example is the ubiquitous RtlMoveMemory method, often aliased as CopyMemory,

which allows to perform super-efficient string and array operations. For example, consider the

following VB6 code:

Declare Sub CopyMemory Lib "kernel32" Alias "RtlMoveMemory" _

 (dest As Any, dest As Any, ByVal numBytes As Long)

Sub FastArrayCopy(source() As Long, dest() As Long)

 ' we assume that both array have same size

 CopyMemory dest(0), source(0), 4 * (UBound(dest) + 1)

 WHITE PAPER <

Tips for smooth migration of calls

to Windows API methods

www.vbmigration.com 3

End Sub

This code works correctly even after the migration to .NET, but it would introduce a dependency

from unmanaged code that can be avoided by rewriting the code as follows:

Sub FastArrayCopy(source() As Long, dest() As Long)

 ' we assume that both array have same size

 Dim i As Long

 For i = 0 To UBound(dest)

 dest(i) = source(i)

 Next

End Sub

You can also use pragmas to have the best of both worlds – the fast CopyMemory method under VB6

and the fully native code under .NET:

Sub FastArrayCopy(source() As Long, dest() As Long)

 ' we assume that both array have same size

 '## ReplaceStatement Array.Copy(source, dest, dest.Length)

 CopyMemory dest(0), source(0), 4 * (UBound(dest) + 1)

End Sub

 WHITE PAPER <

Tips for smooth migration of calls

to Windows API methods

www.vbmigration.com 4

Avoid undocumented VB6 function, if possible

If you can’t avoid a call to an external DLL, at least try to not use the VarPtr, StrPtr, and ObjPtr

method. For example, consider the following VB6 code, which uses a differente syntax for the

RtlMoveMemory Windows API method:

Declare Sub CopyMemory Lib "kernel32" Alias "RtlMoveMemory" _

 (ByVal destAddress As Long, ByVal destAddress As Long, ByVal numBytes As Long)

Sub FastArrayCopy(source() As Long, dest() As Long)

 ' we assume that both array have same size

 CopyMemory ByVal VarPtr(dest(0)), ByVal VarPtr(source(0)), 4 * (UBound(dest) + 1)

End Sub

Function PeekWord(ByVal address As Long) As Integer

 ' read a 16-bit integer from memory

 Dim res As Integer

 CopyMemory address, ByVal VarPtr(res), 2

 WHITE PAPER <

Tips for smooth migration of calls

to Windows API methods

www.vbmigration.com 5

 PeekWord = res

End Function

In this particular case, the VarPtr method is used only because the RtlMoveMemory method expects

a 32-bit address. You can rewrite the VB6 code so that no VarPtr method is necessary any longer, as

follows:

Declare Sub CopyMemory Lib "kernel32" Alias "RtlMoveMemory" _

 (dest As Any, dest As Any, ByVal numBytes As Long)

Declare Sub CopyMemoryFromAddress Lib "kernel32" Alias "RtlMoveMemory" _

 (ByVal destAddress As Long, dest As Any, ByVal numBytes As Long)

Sub FastArrayCopy(source() As Long, dest() As Long)

 ' we assume that both array have same size

 CopyMemory dest(0), source(0), 4 * (UBound(dest) + 1)

End Sub

Function PeekWord(ByVal address As Long) As Integer

 ' read a 16-bit integer from memory

 WHITE PAPER <

Tips for smooth migration of calls

to Windows API methods

www.vbmigration.com 6

 Dim res As Integer

 CopyMemoryFromAddress address, res, 2

 PeekWord = res

End Function

Unfortunately, this trick isn’t always applicable. For example, if you are passing a User Defined Type

to a Windows API method and if a field in the UDT is expected to contain the address of another

variable or structure, then you can’t do without a VarPtr method. In such a case, you must use

another approach, such as the one described next.

Use wrapper methods

If you can’t avoid a call to a Windows API method, at least you should always wrap these calls in a

method. By doing so, you can later replace those calls with references to “pure” .NET Framework

objects and methods.

For simplicity's sake, let's focus on one of the simplest API methods, the GetSystemDirectory

Windows API method. Here's a piece of VB6 code that displays the system directory path:

' Main.Bas module

Public Declare Function GetSystemDirectory Lib "kernel32.dll" Alias _

 "GetSystemDirectoryA" (ByVal lpBuffer As String, ByVal nSize As Long) As Long

 WHITE PAPER <

Tips for smooth migration of calls

to Windows API methods

www.vbmigration.com 7

Sub Main()

 Dim buffer As String, length As Long, windir As String

 buffer = Space(256)

 length = GetSystemDirectory(buffer, Len(buffer))

 winDir = Left(buffer, length)

 MsgBox winDir

End Sub

The first step is to refactor this code so that you make all the Declares private and move them to

another BAS module, that exposes them by means of standard VB6 methods. (If you usually write

tidy and maintainable VB6 code, odds are that you have already taken this step.)

' This is the APIHelpers.Bas file

Private Declare Function GetSystemDirectory Lib "kernel32.dll" Alias _

 "GetSystemDirectoryA" (ByVal lpBuffer As String, ByVal nSize As Long) As Long

' returns the Windows directory

Public Function SystemDirectory() As String

 WHITE PAPER <

Tips for smooth migration of calls

to Windows API methods

www.vbmigration.com 8

 Dim buffer As String, length As Long

 buffer = Space(256)

 length = GetSystemDirectory(buffer, Len(buffer))

 SystemDirectory = Left(buffer, length)

End Function

The code that actually displays or otherwise uses the Windows directory path is now simpler. Notice

that we explicitly include the module name (APIHelpers) in the method call. This tip reduces the odds

that another method with same name exists elsewhere in the project, but the technique explained

later works even if you don't include such a prefix:

' the Main.Bas module

Sub Main()

 Dim windir As String

 winDir = APIHelpers.SystemDirectory

 MsgBox winDir

End Sub

At this point, you have a VB6 project that works exactly like the original one, but it is better

organized and structured, with all Declares statements gathered in one single module. Let's see how

to migrate this code to VB.NET and get rid of all dependencies from non-NET code.

 WHITE PAPER <

Tips for smooth migration of calls

to Windows API methods

www.vbmigration.com 9

First, we prepare a VB.NET module that exposes the same methods as the original APIHelpers.bas

but doesn't use any Declare statement. Here's how we can render the SystemDirectory function

using native .NET calls:

' This is the APIHelpers.vb file (VB.NET)

Module APIHelpers

 Public Function SystemDirectory() As String

 Return Environment.SystemDirectory

 End Function

End Module

Next, we use an ExcludeCurrentFile pragma to exclude the APIHelpers.bas VB6 module from

migration process and we use an AddSourceFile pragma to add the APIHelpers.vb VB.NET file to the

converted Visual Studio project. The neat result is that the code in Main now calls the .NET version of

the method, which doesn't use any unmanaged calls:

' This is the APIHelpers.Bas file

'## ExcludeCurrentFile

'## AddSourceFile "c:\vbnet\modules\apihelpers.vb"

Private Declare Function GetSystemDirectory Lib "kernel32.dll" Alias _

 WHITE PAPER <

Tips for smooth migration of calls

to Windows API methods

www.vbmigration.com 10

 "GetSystemDirectoryA" (ByVal lpBuffer As String, ByVal nSize As Long) As Long

 ' ... remainder of module as before...

This solution works great, but we can improve it. In fact, a (minor) problem is that the resulting

VB.NET code still uses wrapper methods and doesn't look like the "native" .NET code that an

experienced VB.NET developer would write. Fear not, because all you need is a project-level

PostProcess pragma:

' This is the APIHelpers.Bas file

'## ExcludeCurrentFile

'## project:PostProcess "(APIHelpers\.)?SystemDirectory", "Environment.SystemDirectory"

Notice that the AddSourceFile pragma has been dropped because you don't need the wrapper

method any longer (at least in this simplified example). Using similar techniques you can provide a

.NET equivalent for most methods that require API calls under VB6, including methods that take

arguments.

One of the long-terms goals we have in Code Architects is to apply these concepts on a larger scale to

create VB6 helper modules and their corresponding VB.NET versions, to help all VB6 developers to

easily migrate their API-intensive applications.

